amplification factor
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 138)

H-INDEX

25
(FIVE YEARS 4)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 47
Author(s):  
Ping Li ◽  
Rui Jiang ◽  
Jian Lv ◽  
Xianghua Zhai

In this paper, we study the perturbations of the charged static spherically symmetric black holes in the f(R)=R−2αR model by a scalar field. We analyze the quasinormal modes spectrum, superradiant modes, and superradiant instability of the black holes. The frequency of the quasinormal modes is calculated in the frequency domain by the third-order WKB method, and in the time domain by the finite difference method. The results by the two methods are consistent and show that the black hole stabilizes quicker for larger α satisfying the horizon condition. We then analyze the superradiant modes when the massive charged scalar field is scattered by the black hole. The frequency of the superradiant wave satisfies ω∈(μ2,ωc), where μ is the mass of the scalar field, and ωc is the critical frequency of the superradiance. The amplification factor is also calculated by numerical method. Furthermore, the superradiant instability of the black hole is studied analytically, and the results show that there is no superradiant instability for such a system.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Ming-Zhu Guo ◽  
Kun-Sheng Gu ◽  
Chen Wang

There are massive landslides and potential landslides along the Three Rivers Basin in the Qinghai–Tibet Plateau, which pose a serious threat to the Sichuan–Tibet Railway. A normal shaking table model test was conducted to study the dynamic characteristics and dynamic response of a symmetrical counter-bedding rock slope based on the Zongrong Village landslide. The influences of the dynamic parameters, seismic wave type, and a weak intercalated layer on the slope’s dynamic response were considered. The results showed symmetry between the growth trend of the acceleration amplification factor and other research results. When the input wave amplitude was constant, the acceleration amplification factor increased at first and then decreased as the frequency increased. When the input frequency was near the slope’s natural frequency, the acceleration amplification factor increased at first and then decreased with an increase in the input amplitude and reached the maximum value at 0.3 g. The acceleration amplification factor increased linearly with height in the vertical direction inside the slope but increased slowly at first and then sharply along the slope surface, reaching the maximum value at the slope’s top and exhibiting an obvious “elevation effect”. When sinusoidal waves, Wolong waves, and Maoxian waves with the same amplitude were input, the slope’s amplification effect on the bedrock wave was more obvious. The weak intercalated layer showed the phenomenon of “thin layer amplification” and “thick layer attenuation” in response to the input seismic wave. The slope’s failure process can be roughly divided into three stages: (1) the formation of tensile cracks at the top and shear cracks at the toe; (2) the extension of cracks and the sliding of the slope-surface block; (3) the formation of the main sliding surface.


2021 ◽  
pp. 2108267
Author(s):  
Yu‐Feng Meng ◽  
Yin‐Bo Zhu ◽  
Li‐Chuan Zhou ◽  
Xiang‐Sen Meng ◽  
Yu‐Lu Yang ◽  
...  

2021 ◽  
pp. 45-54
Author(s):  
Sonia Akter

Ground motion is the movement of the earth's surface due to explosions or the propagation of seismic waves. In the seismic design process, ground response analysis evaluates the impact of local soil conditions during earthquake shaking. However, it is difficult to determine the dynamic site response of soil deposits in earthquake hazard-prone areas. Structural damage has a great influence on the selection of input ground motion, and in this study, the importance of bedrock motion upon the response of soil is highlighted. The specific site response analysis is assessed through “DEEPSOIl" software with an equivalent linear analysis method. Furthermore, four input motions including Kobe, LomaGilroy, Northridge, and Chi-Chi were selected to obtain normalized response spectra. This study aims to obtain the site amplification of ground motion, peak spectral acceleration (PSA), and maximum peak ground acceleration (PGA) based on shear wave velocity from the detailed site-specific analysis of Bangabandhu Sheikh Mujibor Rahman hall at Khulna University of Engineering & Technology. The maximum shear wave velocity obtained was 205 m/s while the amplification factor varied from 4.01 (Kobe) to 1.8 (Northridge) for rigid bedrock properties. Furthermore, the Kobe earthquake produced the highest (4.3g) PSA and the Northridge earthquake produced the lowest (1.08g) PSA for bedrock, with Vs=205 m/s. The surface PGA values were acquired in the range of 0.254g (Northridge) to 0.722g (Kobe), and the maximum strain values for Kobe earthquakes were in the range of 0.016 to .303. Therefore, the surface acceleration values were very high (>0.12g) for the Kobe earthquake motion.


2021 ◽  
Author(s):  
Shiliang Zhang ◽  
Dongwang Tao ◽  
Quancai Xie ◽  
Qiang Ma ◽  
Fuchen Wang

Abstract Strong horizontal ground motions with the peak ground acceleration (PGA) larger than 1400 gal were observed at Yamamoto (MYGH10) station during the February 2021 Mj 7.3 off the east coast of Honshu, Japan, Fukushima earthquake. Firstly, in this paper, we discussed and verified the theoretical assumptions of the “Nakamura” method under weak and strong ground motions. The site amplification factor of the MYGH10 station was estimated using the surface horizontal-vertical spectral ratio (HVSR) and the surface-to-borehole spectral ratio (SBSR), and the corrected HVSRC, respectively. Meanwhile, the reasons for underestimating the site amplification factor when using HVSR were explained. The vertical amplification phenomenon of seismic P-wave in the high-frequency band was analysed under weak and strong ground motions. Secondly, we utilized HVSR, SBSR, and theoretical transfer function (TTF) based on the 1D wave propagation theory to study the nonlinear site response of MYGH10 station under the mainshock of the Fukushima earthquake and the historically weak and strong ground motions, respectively. The changes in frequencies and amplitudes of the spectral ratio curves when nonlinearities were occurring at the site were analysed and compared using the spectra ratio curves of weak ground motion records and TTF as references. Finally, the recovery of the site after strong nonlinearity was also evaluated by comparing the spectral ratio curves of aftershocks records. We found that the most significant amplification factor of the site increased from 7 to more than 10, and the predominant frequency decreased from 10 Hz to 3.8 Hz under the mainshock of the Fukushima earthquake. The predominant frequency returned to the previous value within three days after the mainshock, but the amplification factor did not.


Author(s):  
Cheonjoong Kim ◽  
Kyungah Lim ◽  
Seonah Kim

In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less


2021 ◽  
Vol 20 (6) ◽  
pp. 476-481
Author(s):  
D. A. Stepanenko ◽  
K. A. Bunchuk

The paper describes a technique for modelling and optimization of ring-shaped compound ultrasonic waveguides consisting of two sequentially joined segments of different materials by means of finite elements method. The possibility of using such waveguides for amplifying vibrations in amplitude has been justified in the paper. The advantage of the developed technique consists in possibility of its realization by means of standard engineering software, particularly COMSOL Multiphysics. The correctness and efficiency of the technique is proved by comparing the numerical data with the simulation results by means of transfer matrix method using equations of vibration of Euler – Bernoulli and Timoshenko type. It is shown that in compound ring-shaped waveguides two kinds of vibration modes are possible – variable-sign and constant-sign, moreover only constant-sign modes are of practical interest for amplification of vibration amplitude. Recommendations for selection of optimal geometric parameters of the waveguides are given, particularly it is shown that for ensuring maximum vibration amplification factor it is necessary to choose central angles of the waveguide segments with account for calculated dependence between amplification factor and angle, characterized by presence of several local maxima of the amplification factor. It is noted that the high accuracy of the existing semi-analytical methods for calculating and designing ring-shaped waveguides is achieved using methods based on the application of Timoshenko-type equations of vibration.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8071
Author(s):  
Nivedita Mishra ◽  
Sharnil Pandya ◽  
Chirag Patel ◽  
Nagaraj Cholli ◽  
Kirit Modi ◽  
...  

Distributed denial-of-service (DDoS) attacks are significant threats to the cyber world because of their potential to quickly bring down victims. Memcached vulnerabilities have been targeted by attackers using DDoS amplification attacks. GitHub and Arbor Networks were the victims of Memcached DDoS attacks with 1.3 Tbps and 1.8 Tbps attack strengths, respectively. The bandwidth amplification factor of nearly 50,000 makes Memcached the deadliest DDoS attack vector to date. In recent times, fellow researchers have made specific efforts to analyze and evaluate Memcached vulnerabilities; however, the solutions provided for security are based on best practices by users and service providers. This study is the first attempt at modifying the architecture of Memcached servers in the context of improving security against DDoS attacks. This study discusses the Memcached protocol, the vulnerabilities associated with it, the future challenges for different IoT applications associated with caches, and the solutions for detecting Memcached DDoS attacks. The proposed solution is a novel identification-pattern mechanism using a threshold scheme for detecting volume-based DDoS attacks. In the undertaken study, the solution acts as a pre-emptive measure for detecting DDoS attacks while maintaining low latency and high throughput.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yifei Sun ◽  
Kun Bian ◽  
Zhuo Liu ◽  
Xin Sun ◽  
Ruoxia Yao

The decomposition-based algorithm, for example, multiobjective evolutionary algorithm based on decomposition (MOEA/D), has been proved effective and useful in a variety of multiobjective optimization problems (MOPs). On the basis of MOEA/D, the MOEA/D-DE replaces the simulated binary crossover (SBX) operator with differential evolution (DE) operator, which is used to enhance the diversity of the solutions more effectively. However, the amplification factor and the crossover probability are fixed in MOEA/D-DE, which would lead to a low convergence rate and be more likely to fall into local optimum. To overcome such a prematurity problem, this paper proposes three different adaptive operators in DE with crossover probability and amplification factors to adjust the parameter settings adaptively. We incorporate these three adaptive operators in MOEA/D-DE and MOEA/D-PaS to solve MOPs and many-objective optimization problems (MaOPs), respectively. This paper also designs a sensitive experiment for the changeable parameter η in the proposed adaptive operators to explore how η would affect the convergence of the proposed algorithms. These adaptive algorithms are tested on many benchmark problems, including ZDT, DTLZ, WFG, and MaF test suites. The experimental results illustrate that the three proposed adaptive algorithms have better performance on most benchmark problems.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012053
Author(s):  
Bapuji Sahoo ◽  
Bikash Mahato ◽  
T. V. S. Sekhar

Abstract Blade coaters are most commonly used for coating of paper and paperboard with higher efficiency. The efficiency of short-dwell blades coaters depends on many factors such as the properties of the coating material, design of the coating reservoir, the types of flow behaviour taking place inside the reservoir, etc. In this work, we have proposed an optimal design of the reservoir to improve the efficiency of short-dwell coaters. The reservoir has been modeled as flow inside a two-dimensional rectangular cavity. Incompressible Navier-Stokes equations in primitive variable formulation have been solved to obtain the flow fields inside the cavity. Spatial derivatives present in the momentum, and continuity equations are evaluated using a sixth-order accurate compact scheme whereas the temporal derivatives are calculated using the fourth-order Runge-Kutta method. The actual rate of convergence of the numerical scheme has been discussed in detail. In addition, the accuracy and stability of the used numerical method are also analysed in the spectral plane with the help of amplification factor and group velocity contour plot. The obtained numerical solutions have been validated with the existing literature. Four different aspect ratio cases (L/H = 3/4,4/3,4/5 and 5/4) have been considered for the simulations including the case of square cavity. It has been observed that L/H = 5/4 case provides best results among all others.


Sign in / Sign up

Export Citation Format

Share Document