scholarly journals A Seismic Demand Model for Bridges Based on IM and EDP Parameter Matching and Bidirectional Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shuai Wang ◽  
Shuai Song ◽  
Gang Wu

The accuracy of seismic demand models in seismic vulnerability analysis of structures or components mainly depends on the seismic intensity measures (IMs) and engineering demand parameters (EDPs). This paper proposes a novel method to obtain the optimal seismic demand model for the seismic vulnerability analysis of bridges. The method obtains the IM-EDP combination by matching all IMs and EDPs within a wide range one by one, considering the contribution of multiple IM parameters to the seismic response of the structure and avoiding the blindness of EDP selection. The IM is determined by calculating Pearson correlation coefficient and partial correlation coefficient, controlling the correlation between EDP and IM (or IMs) to a minimum to reduce the multicollinearity within the vector IMs and avoid ill-conditioned models. The optimal seismic demand model is obtained by inspecting the scatter plot and residual plot of suboptimal seismic demand models determined from all combinations by guaranteeing efficiency and sufficiency. The efficiency of seismic demand models is guaranteed by controlling the root mean square error (RMSE) and the coefficient of determination (R2). The sufficiency of models is guaranteed by controlling the slope of fitted line. A continuous rigid frame bridge with double thin-walled piers is used as a case study and a dynamic time-history analysis is performed to obtain the seismic vulnerability of bridge with the proposed method. The results show that the proposed method is feasible and ideally suited for optimizing seismic demand model.

2016 ◽  
Vol 847 ◽  
pp. 307-318 ◽  
Author(s):  
Hai Bin Ma ◽  
Wei Dong Zhuo ◽  
Gu Yin ◽  
Ying Sun ◽  
Li Bo Chen

Probabilistic seismic demand models are important for the design of structures based on the seismic probability and the performance of the structure. In this paper, the probabilistic seismic demands of 8 representative regular highway bridges are calculated using the cloud approach by selecting 2390 earthquake records for 3 different site conditions. These demands are expressed in terms of an intensity measure (IM), which is the spectral acceleration at the fundamental period with 5% damping, and an engineering demand parameter (EDP), which is the drift ratio at the top of pier. The probability distributions of the EDP are established at several IM levels. The results show that the EDPs have reasonably standard beta distributions at different IM levels. A correlation between the mean EDP and the IM is also established using regression analysis. The probabilistic seismic demand model is suitable for 3 different site conditions and can greatly simplify the calculation of seismic demand in the probability-based and performance-based seismic design of regular bridges.


2021 ◽  
Vol 1763 (1) ◽  
pp. 012015
Author(s):  
M Rusydi ◽  
M B Cyio ◽  
Rahmawati ◽  
Ramlan

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Chongwen Jiang ◽  
Biao Wei ◽  
Dianbin Wang ◽  
Lizhong Jiang ◽  
Xuhui He

In order to evaluate the seismic vulnerability of a railway bridge, a nonlinear finite element model of typical three-span continuous beam bridge on the Sichuan-Tibet railway in China was built. It further aimed at performing a probabilistic seismic demand analysis based on the seismic performance of the above-mentioned bridge. Firstly, the uncertainties of bridge parameters were analyzed while a set of finite element model samples were formulated with Latin hypercube sampling method. Secondly, under Wenchuan earthquake ground motions, an incremental dynamic method (IDA) analysis was performed, and the seismic peak responses of bridge components were recorded. Thirdly, the probabilistic seismic demand model for the bridge principal components under the prerequisite of two different kinds of bearing, with and without seismic isolation, was generated. Finally, comparison was drawn to further ascertain the effect of two different kinds of bearings on the fragility components. Based on the reliability theory, results were presented concerning the seismic fragility curves.


Sign in / Sign up

Export Citation Format

Share Document