scholarly journals Bortezomib Inhibits Hypoxia-Induced Proliferation by Suppressing Caveolin-1/SOCE/[Ca2+]i Signaling Axis in Human PASMCs

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chao Wang ◽  
Yuanqi Li ◽  
Lei Xu ◽  
Qiang Zhang ◽  
Gegentuya ◽  
...  

Background. Previous studies have demonstrated the ubiquitin-proteasome inhibitor bortezomib (BTZ) can effectively alleviate hypoxia-induced pulmonary hypertension (HPH) by suppressing the intracellular calcium homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Further evaluation showed that the antiproliferation roles of BTZ are mainly mediated by inhibition of the intracellular calcium homeostasis. Caveolin-1 belongs to one of the key regulators of the intracellular calcium homeostasis in PASMCs, which can regulate the store-operated calcium entry (SOCE). However, the effects of BTZ on Caveolin-1 remain unclear. Methods. Primarily cultured human PASMCs were used as the cell model. CCK-8 assay was performed to assess the PASMCs proliferation. Western blotting and real-time qPCR were used to detect the mRNA and protein expressions. Fura-2-based fluorescence imaging experiments were used to determine the intracellular calcium concentration ([Ca2+]i). The protein synthesis inhibitor cycloheximide (CHX) was utilized to determine the protein degradation process. Results. Firstly, in cultured human PASMCs, treatment of BTZ for 24 or 60 hours significantly downregulates Caveolin-1 at both mRNA and protein levels. Secondly, in the presence CHX, BTZ treatment also leads to downregulated protein expression and fastened protein degradation of Caveolin-1, indicating that BTZ can promote the Caveolin-1 protein degradation, other than the BTZ on Caveolin-1 mRNA transcription. Then, BTZ significantly attenuates the hypoxia-elevated baseline [Ca2+]i, SOCE, and cell proliferation. Conclusion. We firstly observed that the ubiquitin-proteasome inhibitor BTZ can inhibit the Caveolin-1 expression at both mRNA transcription and protein degradation processes, providing new mechanistic basis of BTZ on PASMC proliferation.

2014 ◽  
Vol 593 (6) ◽  
pp. 1389-1407 ◽  
Author(s):  
Xianming Lin ◽  
Heather O'Malley ◽  
Chunling Chen ◽  
David Auerbach ◽  
Monique Foster ◽  
...  

1991 ◽  
Vol 18 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Hideo Kusuoka ◽  
Shiho Futaki ◽  
Yukihiro Koretsune ◽  
Akira Kitabatake ◽  
Hiroyuki Suga ◽  
...  

2020 ◽  
Vol 470 (1-2) ◽  
pp. 131-143
Author(s):  
Muhammad Afzal ◽  
Betsy T. Kren ◽  
A. Khaliq Naveed ◽  
Janeen H. Trembley ◽  
Khalil Ahmed

2019 ◽  
Vol 514 (3) ◽  
pp. 960-966
Author(s):  
Zhiyong Zhao ◽  
Lixue Cao ◽  
Erick Hernández-Ochoa ◽  
Martin F. Schneider ◽  
E. Albert Reece

Sign in / Sign up

Export Citation Format

Share Document