scholarly journals On Behavior of the Periodic Orbits of a Hamiltonian System of Bifurcation of Limit Cycles

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Mohamed Abdalla ◽  
Sahar Ahmed Idris ◽  
Ibrahim Mekawy

In light of the previous recent studies by Jaume Llibre et al. that dealt with the finite cycles of generalized differential Kukles polynomial systems using the first- and second-order mean theorem such as (Nonlinear Anal., 74, 1261–1271, 2011) and (J. Dyn. Control Syst., vol. 21, 189–192, 2015), in this work, we provide upper bounds for the maximum number of limit cycles bifurcating from the periodic orbits of Hamiltonian system using the averaging theory of first order.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


2020 ◽  
Vol 30 (15) ◽  
pp. 2050230
Author(s):  
Jiaxin Wang ◽  
Liqin Zhao

In this paper, by using Picard–Fuchs equations and Chebyshev criterion, we study the bifurcation of limit cycles for degenerate quadratic Hamilton systems with polycycles [Formula: see text] or [Formula: see text] under the perturbations of piecewise smooth polynomials with degree [Formula: see text]. Roughly speaking, for [Formula: see text], a polycycle [Formula: see text] is cyclically ordered collection of [Formula: see text] saddles together with orbits connecting them in specified order. The discontinuity is on the line [Formula: see text]. If the first order Melnikov function is not equal to zero identically, it is proved that the upper bounds of the number of limit cycles bifurcating from each of the period annuli with the boundary [Formula: see text] and [Formula: see text] are respectively [Formula: see text] and [Formula: see text] (taking into account the multiplicity).


2016 ◽  
Vol 26 (11) ◽  
pp. 1650180 ◽  
Author(s):  
Ali Bakhshalizadeh ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850038
Author(s):  
Marzieh Mousavi ◽  
Hamid R. Z. Zangeneh

In this paper, we study the asymptotic expansion of the first order Melnikov function near a 3-polycycle connecting a cusp (of order one or two) to two hyperbolic saddles for a near-Hamiltonian system in the plane. The formulas for the first coefficients of the expansion are given as well as the method of bifurcation of limit cycles. Then we use the results to study two Hamiltonian systems with this 3-polycycle and determine the number and distribution of limit cycles that can bifurcate from the perturbed systems. Moreover, a sharp upper bound for the number of limit cycles bifurcated from the whole periodic annulus is found when there is a cusp of order one.


2015 ◽  
Vol 25 (03) ◽  
pp. 1550047 ◽  
Author(s):  
Linping Peng ◽  
Zhaosheng Feng

This paper is concerned with the bifurcation of limit cycles from a quintic system with one center. By using the averaging theory, we show that under any small quintic homogeneous perturbations, up to order 1 in ε, at most three limit cycles bifurcate from periodic orbits of the considered system, and this upper bound can be reached. Up to order 2 in ε, at most seven limit cycles emerge from periodic orbits of the unperturbed one.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han

This paper concerns limit cycle bifurcations by perturbing a piecewise linear Hamiltonian system. We first obtain all phase portraits of the unperturbed system having at least one family of periodic orbits. By using the first-order Melnikov function of the piecewise near-Hamiltonian system, we investigate the maximal number of limit cycles that bifurcate from a global center up to first order ofε.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tao Li ◽  
Jaume Llibre

<p style='text-indent:20px;'>In this paper we study the maximum number of limit cycles bifurcating from the periodic orbits of the center <inline-formula><tex-math id="M1">\begin{document}$ \dot x = -y((x^2+y^2)/2)^m, \dot y = x((x^2+y^2)/2)^m $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ m\ge0 $\end{document}</tex-math></inline-formula> under discontinuous piecewise polynomial (resp. polynomial Hamiltonian) perturbations of degree <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math></inline-formula> with the discontinuity set <inline-formula><tex-math id="M4">\begin{document}$ \{(x, y)\in\mathbb{R}^2: xy = 0\} $\end{document}</tex-math></inline-formula>. Using the averaging theory up to any order <inline-formula><tex-math id="M5">\begin{document}$ N $\end{document}</tex-math></inline-formula>, we give upper bounds for the maximum number of limit cycles in the function of <inline-formula><tex-math id="M6">\begin{document}$ m, n, N $\end{document}</tex-math></inline-formula>. More importantly, employing the higher order averaging method we provide new lower bounds of the maximum number of limit cycles for several types of piecewise polynomial systems, which improve the results of the previous works. Besides, we explore the effect of 4-star-symmetry on the maximum number of limit cycles bifurcating from the unperturbed periodic orbits. Our result implies that 4-star-symmetry almost halves the maximum number.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Ziguo Jiang

We study the number of limit cycles for the quadratic polynomial differential systemsx˙=-y+x2,y˙=x+xyhaving an isochronous center with continuous and discontinuous cubic polynomial perturbations. Using the averaging theory of first order, we obtain that 3 limit cycles bifurcate from the periodic orbits of the isochronous center with continuous perturbations and at least 7 limit cycles bifurcate from the periodic orbits of the isochronous center with discontinuous perturbations. Moreover, this work shows that the discontinuous systems have at least 4 more limit cycles surrounding the origin than the continuous ones.


2018 ◽  
Vol 28 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Pegah Moghimi ◽  
Rasoul Asheghi ◽  
Rasool Kazemi

In this paper, we study the number of bifurcated limit cycles from some polynomial systems with a double homoclinic loop passing through a nilpotent saddle surrounded by a heteroclinic loop, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems. In particular, we study the bifurcation of limit cycles in the following system: [Formula: see text] where [Formula: see text] is a polynomial of degree [Formula: see text].


2010 ◽  
Vol 20 (05) ◽  
pp. 1379-1390 ◽  
Author(s):  
XIA LIU ◽  
MAOAN HAN

In this paper, the general perturbation of piecewise Hamiltonian systems on the plane is considered. When the unperturbed system has a family of periodic orbits, similar to the perturbations of smooth system, an expression of the first order Melnikov function is derived, which can be used to study the number of limit cycles bifurcated from the periodic orbits. As applications, the number of bifurcated limit cycles of several concrete piecewise systems are presented.


Sign in / Sign up

Export Citation Format

Share Document