scholarly journals Last train timetable optimization considering detour routing strategy in an urban rail transit network

2019 ◽  
Vol 52 (9-10) ◽  
pp. 1461-1479
Author(s):  
Yu Yao ◽  
Xiaoning Zhu ◽  
Hua Shi ◽  
Pan Shang

As an important means of transportation, urban rail transit provides effective mobility, sufficient punctuality, strong security, and environment-friendliness in large cities. However, this transportation mode cannot offer a 24-h service to passengers with the consideration of operation cost and the necessity of maintenance, that is, a final time should be set. Therefore, operators need to design a last train timetable in consideration of the number of successful travel passengers and the total passenger transfer waiting time. This paper proposes a bi-level last train timetable optimization model. Its upper level model aims to maximize the number of passengers who travel by the last train service successful and minimize their transfer waiting time, and its lower level model aims to determine passenger route choice considering the detour routing strategy based on the last train timetable. A genetic algorithm is proposed to solve the upper level model, and the lower level model is solved by a semi-assignment algorithm. The implementation of the proposed model in the Beijing urban rail transit network proves that the model can optimize not only the number of successful transfer directions and successful travel passengers but also the passenger transfer waiting time of successful transfer directions. The optimization results can provide operators detailed information about the stations inaccessible to passengers from all origin stations and uncommon path guides for passengers of all origin–destination pairs. These types of information facilitate the operation of real-world urban rail transit systems.

2020 ◽  
Vol 12 (10) ◽  
pp. 4166 ◽  
Author(s):  
Xuan Li ◽  
Toshiyuki Yamamoto ◽  
Tao Yan ◽  
Lili Lu ◽  
Xiaofei Ye

This paper proposes a novel model to optimize the first train timetables for urban rail transit networks, with the goal of maximizing passengers’ transfer waiting time satisfaction. To build up the relationship of transfer waiting time and passenger satisfaction, a reference-based piecewise function is formulated with the consideration of passengers’ expectations, tolerances and dissatisfaction on “just miss”. In order to determine the parameters of zero waiting satisfaction rating, the most comfortable waiting time, and the maximum tolerable waiting time in time satisfaction function, a stated preference survey is conducted in rail transit transfer stations in Shanghai. An artificial bee colony algorithm is developed to solve the timetabling model. Through a real-world case study on Shanghai’s urban rail transit network and comparison with the results of minimizing the total transfer time, we demonstrate that our approach performs better in decreasing extremely long wait and “just miss” events and increasing the number of passengers with a relatively comfortable waiting time in [31s, 5min). Finally, four practical suggestions are proposed for urban rail transit network operations.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Renjie Zhang ◽  
Shisong Yin ◽  
Mao Ye ◽  
Zhiqiang Yang ◽  
Shanglu He

Nowadays, an express/local mode has be studied and applied in the operation of urban rail transit, and it has been proved to be beneficial for the long-distance travel. The optimization of train patterns and timetables is vital in the application of the express/local mode. The former one has been widely discussed in the various existing works, while the study on the timetable optimization is limited. In this study, a timetable optimization model is proposed by minimizing the total passenger waiting time at platforms. Further, a genetic algorithm is used to solve the minimization problems in the model. This study uses the data collected from Guangzhou Metro Line 14 and finds that the total passenger waiting time at platforms is reduced by 9.3%. The results indicate that the proposed model can reduce the passenger waiting time and improve passenger service compared with the traditional timetable.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Rui-Jia Shi ◽  
Bao-Hua Mao ◽  
Yong Ding ◽  
Yun Bai ◽  
Yao Chen

In an urban rail transit system, it is important to coordinate the timetable of a loop line with its connecting lines so as to reduce the waiting time of passengers. This is particularly essential because transfer passengers usually account for the majority of the total passengers in loop lines. In this paper, a timetable optimization model is developed for loop line in order to minimize the average waiting time of access passengers and transfer passengers. This is performed by adjusting the headways and dwell times of trains on the loop line. A genetic algorithm is applied to solve the proposed model, and a numerical example is used to verify its effectiveness. Finally, a case study of a loop line in the Beijing urban rail transit system is conducted. Waiting times of the passengers and the number of waiting passengers are used as performance indicators to verify the optimization results in rush hours and non-rush hours. The results show that the average waiting times for the up-track and down-track are reduced by 3.69% and 2.89% during rush hours and by 11.60% and 11.47% during non-rush hours, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Si-Jia Zhang ◽  
Shun-Ping Jia ◽  
Yun Bai ◽  
Bao-Hua Mao ◽  
Cun-Rui Ma ◽  
...  

It is of great importance to optimize the schemes of long through-type bus lines to adapt to the urban rail transit network. Focusing on the long through-type bus lines close to metro stations, a bilevel programming model on the adjustment schemes of bus lines is proposed, taking the impacts of urban rail transit network into account. The upper level model aims at adjusting the setting decisions of stop stations and vehicle headways of bus lines to minimize the passenger travel cost and maximize the benefits of bus operators. The lower level model is a passenger flow assignment model based on Logit-SUE considering the crowding perception of passengers in bus vehicles. Moreover, the constraint of average load factor of the bus line sections is considered. Then the genetic algorithm is applied to solve the proposed model, and a numerical example is conducted to verify the effectiveness. Results show that the value of the objective function of the model is improved by 27.2%, in comparison with the original scheme. Even though the average travel cost of passengers increases slightly, the bus line operation cost and the imbalance degree of load factors are reduced by 46.1% and 18.6%, respectively. The sensitivity analyses show that it is better to divide the long through-type bus line into several separate bus lines with independent operation, respectively, under the condition of unbalanced passenger flow distribution. Meanwhile, the multiple bus lines are more adapted to the unbalanced passenger flow distribution when the weight of the benefits of the bus operators in the total objective function is bigger. Besides, the lower time value that the passengers perceive, the more passengers willing to take bus than metro trains. As the increment of the passenger time value, the combination of feeder bus lines and a longer bus line is better for passengers’ trip demand than the long through-type bus line.


2014 ◽  
Vol 488-489 ◽  
pp. 1439-1443
Author(s):  
Jin Hai Li ◽  
Jian Feng Liu

Hyperpaths enumeration is one of the basic procedures in many traffic planning issues. As a result of its distinctive structure, hyperpaths in Urban Rail Transit Network (URTN) are different from those in road network. Typically, one may never visit a station more than once and would never transfer from one line to another that has been visited in a loopless URTN, meaning that stations a hyperpath traversed cannot be repeated, neither do lines in loopless networks. This paper studies the relationships between feasible path and the shortest path in terms of travel costs. In this paper, a new definition of hyperpath in URTN is proposed and a new algorithm based on the breadth first searching (BFS) method is presented to enumerate the hyperpaths. The algorithm can safely avoid hyperpath omission and can even be applied in networks containing loops as well. The influence of parameters on hyperpaths is studied by experimentally finding hyperpaths in the subway network in Beijing. A group of suggested parameter pairs are then given. Finally, a numerical experiment is used to illustrate the validity of the proposed algorithm. The results imply the significance of the convergence of the BFS algorithm which can be used to search hyperpaths in large scale URTN even with loop.


2014 ◽  
Vol 513-517 ◽  
pp. 3958-3963 ◽  
Author(s):  
Bo Gao ◽  
Ling Xi Zhu ◽  
Xue Mei Xiao

Based on the multi-source information fusion and complex network theory, through studying the effective matching and integration of safety equipment and spatial information of urban rail transit network operation, a safety assessment model is proposed: through equipment fusion and the node fusion, the global safety parameter is obtained, which is accurate in description and evaluation of urban rail transit operating than the partial safety factors and realize the transform from microscopic description to macroscopic description.


2011 ◽  
Vol 243-249 ◽  
pp. 4375-4380
Author(s):  
Yuan Chun Huang ◽  
Jian Li ◽  
Haize Pan

Through analyzing the factors affecting passengers’ path-choice, the corresponding principles and rules of the ticket income distribution are put forward and the new model of the Urban Rail Transit Network in Beijing is set up in the paper. Through the deformation of the urban rail transit and the simplification of the lines, the topology of the urban rail transit lines is abstracted into an undirected connection graph. Breadth-priority optimization algorithm is applied to search the effective paths between the OD and the flow-matching ratio is acquired by calculating based on multi-factor matching algorithm, in which many relevant numerical examples are analyzed to verify the feasibility of the dual-ratio method and to summarize the characteristics of the project.


Sign in / Sign up

Export Citation Format

Share Document