scholarly journals Two-Dimensional ISAR Fusion Imaging of Block Structure Targets

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiaoxiu Zhu ◽  
Limin Liu ◽  
Baofeng Guo ◽  
Wenhua Hu ◽  
Lin Shi ◽  
...  

The range resolution and azimuth resolution are restricted by the limited transmitting bandwidth and observation angle in a monostatic radar system. To improve the two-dimensional resolution of inverse synthetic aperture radar (ISAR) imaging, a fast linearized Bregman iteration for unconstrained block sparsity (FLBIUB) algorithm is proposed to achieve multiradar ISAR fusion imaging of block structure targets. First, the ISAR imaging echo data of block structure targets is established based on the geometrical theory of the diffraction model. The multiradar ISAR fusion imaging is transformed into a signal sparse representation problem by vectorization operation. Then, considering the block sparsity of the echo data of block structure targets, the FLBIUB algorithm is utilized to achieve the block sparse signal reconstruction and obtain the fusion image. The algorithm further accelerates the iterative convergence speed and improves the imaging efficiency by combining the weighted back-adding residual and condition number optimization of the basis matrix. Finally, simulation experiments show that the proposed method can effectively achieve block sparse signal reconstruction and two-dimensional multiradar ISAR fusion imaging of block structure targets.

Author(s):  
Chen Ye ◽  
◽  
Guan Gui ◽  
Shin-ya Matsushita ◽  
Li Xu ◽  
...  

Sparse signal reconstruction (SSR) problems based on compressive sensing (CS) arise in a broad range of application fields. Among these are the so-called “block-structured” or “block sparse” signals with nonzero atoms occurring in clusters that occur frequently in natural signals. To make block-structured sparsity use more explicit, many block-structure-based SSR algorithms, such as convex optimization and greedy pursuit, have been developed. Convex optimization algorithms usually pose a heavy computational burden, while greedy pursuit algorithms are overly sensitive to ambient interferences, so these two types of block-structure-based SSR algorithms may not be suited for solving large-scale problems in strong interference scenarios. Sparse adaptive filtering algorithms have recently been shown to solve large-scale CS problems effectively for conventional vector sparse signals. Encouraged by these facts, we propose two novel block-structure-based sparse adaptive filtering algorithms, i.e., the “block zero attracting least mean square” (BZA-LMS) algorithm and the “blockℓ0-norm LMS” (BL0-LMS) algorithm, to exploit their potential performance gain. Experimental results presented demonstrate the validity and applicability of these proposed algorithms.


2021 ◽  
Vol 140 ◽  
pp. 100-112
Author(s):  
You Zhao ◽  
Xiaofeng Liao ◽  
Xing He ◽  
Rongqiang Tang ◽  
Weiwei Deng

2019 ◽  
Vol 26 (10) ◽  
pp. 1541-1545 ◽  
Author(s):  
Yunmei Shi ◽  
Xing-Peng Mao ◽  
Chunlei Zhao ◽  
Yong-Tan Liu

Sign in / Sign up

Export Citation Format

Share Document