scholarly journals Nonfrontal Expression Recognition in the Wild Based on PRNet Frontalization and Muscle Feature Strengthening

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Tianyang Cao ◽  
Chang Liu ◽  
Jiamin Chen

Nonfrontal facial expression recognition in the wild is the key for artificial intelligence and human-computer interaction. However, it is easy to be disturbed when changing head pose. Therefore, this paper presents a face rebuilding method to solve this problem based on PRNet, which can build 3D frontal face for 2D head photo with any pose. However, expression is still difficult to be recognized, because facial features weakened after frontalization, which had been widely reported by previous studies. It can be proved that all muscle parameters in frontalization face are more weakened than those of real face, except muscle moving direction on each small area. Thus, this paper also designed muscle movement rebuilding and intensifying method, and through 3D face contours and Fréchet distance, muscular moving directions on each muscle area are extracted and muscle movement is strengthened following these moving directions to intensify the whole face expression. Through this way, nonfrontal facial expression can be recognized effectively.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2003 ◽  
Author(s):  
Xiaoliang Zhu ◽  
Shihao Ye ◽  
Liang Zhao ◽  
Zhicheng Dai

As a sub-challenge of EmotiW (the Emotion Recognition in the Wild challenge), how to improve performance on the AFEW (Acted Facial Expressions in the wild) dataset is a popular benchmark for emotion recognition tasks with various constraints, including uneven illumination, head deflection, and facial posture. In this paper, we propose a convenient facial expression recognition cascade network comprising spatial feature extraction, hybrid attention, and temporal feature extraction. First, in a video sequence, faces in each frame are detected, and the corresponding face ROI (range of interest) is extracted to obtain the face images. Then, the face images in each frame are aligned based on the position information of the facial feature points in the images. Second, the aligned face images are input to the residual neural network to extract the spatial features of facial expressions corresponding to the face images. The spatial features are input to the hybrid attention module to obtain the fusion features of facial expressions. Finally, the fusion features are input in the gate control loop unit to extract the temporal features of facial expressions. The temporal features are input to the fully connected layer to classify and recognize facial expressions. Experiments using the CK+ (the extended Cohn Kanade), Oulu-CASIA (Institute of Automation, Chinese Academy of Sciences) and AFEW datasets obtained recognition accuracy rates of 98.46%, 87.31%, and 53.44%, respectively. This demonstrated that the proposed method achieves not only competitive performance comparable to state-of-the-art methods but also greater than 2% performance improvement on the AFEW dataset, proving the significant outperformance of facial expression recognition in the natural environment.


Author(s):  
Siu-Yeung Cho ◽  
Teik-Toe Teoh ◽  
Yok-Yen Nguwi

Facial expression recognition is a challenging task. A facial expression is formed by contracting or relaxing different facial muscles on human face that results in temporally deformed facial features like wide-open mouth, raising eyebrows or etc. The challenges of such system have to address with some issues. For instances, lighting condition is a very difficult problem to constraint and regulate. On the other hand, real-time processing is also a challenging problem since there are so many facial features to be extracted and processed and sometimes, conventional classifiers are not even effective in handling those features and produce good classification performance. This chapter discusses the issues on how the advanced feature selection techniques together with good classifiers can play a vital important role of real-time facial expression recognition. Several feature selection methods and classifiers are discussed and their evaluations for real-time facial expression recognition are presented in this chapter. The content of this chapter is a way to open-up a discussion about building a real-time system to read and respond to the emotions of people from facial expressions.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 4047-4051

The automatic detection of facial expressions is an active research topic, since its wide fields of applications in human-computer interaction, games, security or education. However, the latest studies have been made in controlled laboratory environments, which is not according to real world scenarios. For that reason, a real time Facial Expression Recognition System (FERS) is proposed in this paper, in which a deep learning approach is applied to enhance the detection of six basic emotions: happiness, sadness, anger, disgust, fear and surprise in a real-time video streaming. This system is composed of three main components: face detection, face preparation and face expression classification. The results of proposed FERS achieve a 65% of accuracy, trained over 35558 face images..


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 159172-159181
Author(s):  
Byungok Han ◽  
Woo-Han Yun ◽  
Jang-Hee Yoo ◽  
Won Hwa Kim

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 131988-132001 ◽  
Author(s):  
Thanh-Hung Vo ◽  
Guee-Sang Lee ◽  
Hyung-Jeong Yang ◽  
Soo-Hyung Kim

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1087
Author(s):  
Muhammad Naveed Riaz ◽  
Yao Shen ◽  
Muhammad Sohail ◽  
Minyi Guo

Facial expression recognition has been well studied for its great importance in the areas of human–computer interaction and social sciences. With the evolution of deep learning, there have been significant advances in this area that also surpass human-level accuracy. Although these methods have achieved good accuracy, they are still suffering from two constraints (high computational power and memory), which are incredibly critical for small hardware-constrained devices. To alleviate this issue, we propose a new Convolutional Neural Network (CNN) architecture eXnet (Expression Net) based on parallel feature extraction which surpasses current methods in accuracy and contains a much smaller number of parameters (eXnet: 4.57 million, VGG19: 14.72 million), making it more efficient and lightweight for real-time systems. Several modern data augmentation techniques are applied for generalization of eXnet; these techniques improve the accuracy of the network by overcoming the problem of overfitting while containing the same size. We provide an extensive evaluation of our network against key methods on Facial Expression Recognition 2013 (FER-2013), Extended Cohn-Kanade Dataset (CK+), and Real-world Affective Faces Database (RAF-DB) benchmark datasets. We also perform ablation evaluation to show the importance of different components of our architecture. To evaluate the efficiency of eXnet on embedded systems, we deploy it on Raspberry Pi 4B. All these evaluations show the superiority of eXnet for emotion recognition in the wild in terms of accuracy, the number of parameters, and size on disk.


Sign in / Sign up

Export Citation Format

Share Document