scholarly journals Effects of Skin Friction on Tactile P300 Brain-Computer Interface Performance

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ying Mao ◽  
Jing Jin ◽  
Shurui Li ◽  
Yangyang Miao ◽  
Andrzej Cichocki

Tactile perception, the primary sensing channel of the tactile brain-computer interface (BCI), is a complicated process. Skin friction plays a vital role in tactile perception. This study aimed to examine the effects of skin friction on tactile P300 BCI performance. Two kinds of oddball paradigms were designed, silk-stim paradigm (SSP) and linen-stim paradigm (LSP), in which silk and linen were wrapped on target vibration motors, respectively. In both paradigms, the disturbance vibrators were wrapped in cotton. The experimental results showed that LSP could induce stronger event-related potentials (ERPs) and achieved a higher classification accuracy and information transfer rate (ITR) compared with SSP. The findings indicate that high skin friction can achieve high performance in tactile BCI. This work provides a novel research direction and constitutes a viable basis for the future tactile P300 BCI, which may benefit patients with visual impairments.

Author(s):  
ShuRui Li ◽  
Jing Jin ◽  
Ian Daly ◽  
Chang Liu ◽  
Andrzej Cichocki

Abstract Brain–computer interface (BCI) systems decode electroencephalogram signals to establish a channel for direct interaction between the human brain and the external world without the need for muscle or nerve control. The P300 speller, one of the most widely used BCI applications, presents a selection of characters to the user and performs character recognition by identifying P300 event-related potentials from the EEG. Such P300-based BCI systems can reach good levels of accuracy but are difficult to use in day-to-day life due to redundancy and noisy signal. A room for improvement should be considered. We propose a novel hybrid feature selection method for the P300-based BCI system to address the problem of feature redundancy, which combines the Menger curvature and linear discriminant analysis. First, selected strategies are applied separately to a given dataset to estimate the gain for application to each feature. Then, each generated value set is ranked in descending order and judged by a predefined criterion to be suitable in classification models. The intersection of the two approaches is then evaluated to identify an optimal feature subset. The proposed method is evaluated using three public datasets, i.e., BCI Competition III dataset II, BNCI Horizon dataset, and EPFL dataset. Experimental results indicate that compared with other typical feature selection and classification methods, our proposed method has better or comparable performance. Additionally, our proposed method can achieve the best classification accuracy after all epochs in three datasets. In summary, our proposed method provides a new way to enhance the performance of the P300-based BCI speller.


2020 ◽  
Vol 20 (3) ◽  
pp. 743-757
Author(s):  
Teng Ma ◽  
Xuezhuan Zhao

The chromatic transient visual evoked potential (CTVEP)-based brain-computer interface (BCI) can provide safer and more comfortable stimuli than the traditional VEP-based BCIs due to its low frequency change and no luminance variation in the visual stimulation. However, it still generates relatively few codes that correspond to input commands to control the outside devices, which limits its application in the practical BCIs to some extent. Aiming to obtain more codes, we firstly proposes a new time coding technique to CTVEP-based BCI by utilizing a combination of two 4-bit binary codes to construct four 8-bit binary codes to increase the control commands to extend its application in practice. In the experiment, two time-encoded isoluminant chromatic stimuli are combined to serve as different commands for BCI control, and the results show that the high performance based on the new time coding approach with the average accuracy up to 90.28% and average information transfer rate up to 27.78 bits/min for BCI can be achieved. It turns out that the BCI system based on the proposed method is feasible, stable and efficient, which makes the method very suitable for the practical application of BCIs, such as military, entertainment and medical enterprise.


2020 ◽  
Vol 14 ◽  
Author(s):  
Luiza Kirasirova ◽  
Vladimir Bulanov ◽  
Alexei Ossadtchi ◽  
Alexander Kolsanov ◽  
Vasily Pyatin ◽  
...  

A P300 brain-computer interface (BCI) is a paradigm, where text characters are decoded from event-related potentials (ERPs). In a popular implementation, called P300 speller, a subject looks at a display where characters are flashing and selects one character by attending to it. The selection is recognized as the item with the strongest ERP. The speller performs well when cortical responses to target and non-target stimuli are sufficiently different. Although many strategies have been proposed for improving the BCI spelling, a relatively simple one received insufficient attention in the literature: reduction of the visual field to diminish the contribution from non-target stimuli. Previously, this idea was implemented in a single-stimulus switch that issued an urgent command like stopping a robot. To tackle this approach further, we ran a pilot experiment where ten subjects operated a traditional P300 speller or wore a binocular aperture that confined their sight to the central visual field. As intended, visual field restriction resulted in a replacement of non-target ERPs with EEG rhythms asynchronous to stimulus periodicity. Changes in target ERPs were found in half of the subjects and were individually variable. While classification accuracy was slightly better for the aperture condition (84.3 ± 2.9%, mean ± standard error) than the no-aperture condition (81.0 ± 2.6%), this difference was not statistically significant for the entire sample of subjects (N = 10). For both the aperture and no-aperture conditions, classification accuracy improved over 4 days of training, more so for the aperture condition (from 72.0 ± 6.3% to 87.0 ± 3.9% and from 72.0 ± 5.6% to 97.0 ± 2.2% for the no-aperture and aperture conditions, respectively). Although in this study BCI performance was not substantially altered, we suggest that with further refinement this approach could speed up BCI operations and reduce user fatigue. Additionally, instead of wearing an aperture, non-targets could be removed algorithmically or with a hybrid interface that utilizes an eye tracker. We further discuss how a P300 speller could be improved by taking advantage of the different physiological properties of the central and peripheral vision. Finally, we suggest that the proposed experimental approach could be used in basic research on the mechanisms of visual processing.


Author(s):  
Sergey Lytaev ◽  
Irina Vatamaniuk

The objective of this study was aimed to study the sensory processes of the “human-computer interaction” model when classifying visual images with an incomplete set of signs based on the analysis of early, middle, late and slow components of event-related potentials (ERPs). 26 healthy subjects (men) aged 20-22 years were investigated. ERPs in 19 monopolar sites according to the 10/20 system were recorded. Discriminant and factor analysis were applied. The component N450 is the most specialized indicator of the perception of unrecognizable (oddball) visual images. The amplitude of the ultra-late components N750 and N900 is also higher under conditions of presentation of the oddball image, regardless of the location of the registration points. The results of the study are discussed in the light of the paradigm of the P300 wave application in brain-computer interface systems, as well as with the peculiarities in brain pathology. Promising directions for the development of studies of the “Brain Computer Interface” (BCI) P300 systems are to increase the throughput of information flows. To extend the application of the P300 ERPs to multiple modalities, the underlying physiological mechanisms and responses of the brain for a particular sensory system and mental function must be carefully examined.


2020 ◽  
Author(s):  
Rafael Grigoryan ◽  
Dariya Goranskaya ◽  
Andrey Demchinsky ◽  
Ksenia Ryabova ◽  
Denis Kuleshov ◽  
...  

AbstractIn this study, we have created an 8-command P300 tactile BCI with two stimuli types, running on a minimally modified consumer Braille display and tested it on 10 blind subjects and 10 sighted controls. Blind subjects have demonstrated 27% higher median accuracy than sighted controls (p < 0.05), proving that the blind subjects are not only able to use tactile BCI but also can achieve superior results in comparison with sighted subjects. Median accuracy in the blind group with the best stimuli type has reached 95%. The difference in event-related potentials between groups is located in frontocentral sites before 300 ms post-stimulus and corresponds with early cognitive ERP components. The blind subjects have higher amplitude and lower latency of ERPs. This result is consistent through experimental conditions with different tactile stimuli. The classification performance for the blind subjects is correlated with Braille reading speed. This enables a discussion about mechanisms of plastic changes during sensory compensation after vision loss and its dependence on personal perceptual experience.Author summarySensory compensation following vision loss can be recognized as a unique model for neural plasticity. However, the magnitude of the effect and the specific tasks where it’s manifested is still a subject for debate. In this study, we have created a tactile brain-computer interface game to study how somatosensory processing is different between the blind and the sighted people. The participants were required to attend to tactile stimuli, and the correct stimulus was selected using realtime EEG classification. We have shown, for the first time, that the blind subjects are significantly better than the sighted in tactile brain-computer interface tasks. We have also found, that individual performance is correlated with Braille proficiency. This result links personal perceptual abilities in two different sensory tasks. EEG analysis revealed that differences in performance can be attributed to early cognitive processing steps. Along with practical considerations in brain-computer interface development, the results also add to the data on cognitive processing in the blind and enable the discussion on the importance of Braille education.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Qibin Zhao ◽  
Liqing Zhang

Brain-computer interface (BCI) systems create a novel communication channel from the brain to an output device bypassing conventional motor output pathways of nerves and muscles. Modern BCI technology is essentially based on techniques for the classification of single-trial brain signals. With respect to the topographic patterns of brain rhythm modulations, the common spatial patterns (CSPs) algorithm has been proven to be very useful to produce subject-specific and discriminative spatial filters; but it didn't consider temporal structures of event-related potentials which may be very important for single-trial EEG classification. In this paper, we propose a new framework of feature extraction for classification of hand movement imagery EEG. Computer simulations on real experimental data indicate that independent residual analysis (IRA) method can provide efficient temporal features. Combining IRA features with the CSP method, we obtain the optimal spatial and temporal features with which we achieve the best classification rate. The high classification rate indicates that the proposed method is promising for an EEG-based brain-computer interface.


Sign in / Sign up

Export Citation Format

Share Document