p300 speller
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 71)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
pp. 541-569
Author(s):  
Praveen Kumar Shukla ◽  
Rahul Kumar Chaurasiya ◽  
Shrish Verma

The brain-computer interface (BCI) system uses electroencephalography (EEG) signals for correspondence between the human and the outside world. This BCI communication system does not require any muscle action; hence, it can be controlled with the help of brain activities only. Therefore, this kind of system is helpful for patients, who are completely paralyzed or suffering from diseases like ALS (Amyotrophic Lateral Sclerosis), and spinal cord injury, etc., but having a normal functioning brain. A region-based P300 speller system for controlling home electronic appliances is proposed in this article. With the help of the proposed system, users can control and use appliances like an electronic door, fan, light, system, etc., without carrying out any physical movement. The experiments are conducted for five, ten, and fifteen trails for each subject. Among all classifiers, the ANN classifier provides the best off-line experiment accuracy of the order of 80% for fifteen flashes. Moreover, for the control translation, the Arduino module is also designed which is low cost and low power-based and physically controlled a device.


2021 ◽  
pp. 1-13
Author(s):  
P Loizidou ◽  
E Rios ◽  
A Marttini ◽  
O Keluo-Udeke ◽  
J Soetedjo ◽  
...  

2021 ◽  
Vol 11 (23) ◽  
pp. 11252
Author(s):  
Ayana Mussabayeva ◽  
Prashant Kumar Jamwal ◽  
Muhammad Tahir Akhtar

Classification of brain signal features is a crucial process for any brain–computer interface (BCI) device, including speller systems. The positive P300 component of visual event-related potentials (ERPs) used in BCI spellers has individual variations of amplitude and latency that further changse with brain abnormalities such as amyotrophic lateral sclerosis (ALS). This leads to the necessity for the users to train the speller themselves, which is a very time-consuming procedure. To achieve subject-independence in a P300 speller, ensemble classifiers are proposed based on classical machine learning models, such as the support vector machine (SVM), linear discriminant analysis (LDA), k-nearest neighbors (kNN), and the convolutional neural network (CNN). The proposed voters were trained on healthy subjects’ data using a generic training approach. Different combinations of electroencephalography (EEG) channels were used for the experiments presented, resulting in single-channel, four-channel, and eight-channel classification. ALS patients’ data represented robust results, achieving more than 90% accuracy when using an ensemble of LDA, kNN, and SVM on four active EEG channels data in the occipital area of the brain. The results provided by the proposed ensemble voting models were on average about 5% more accurate than the results provided by the standalone classifiers. The proposed ensemble models could also outperform boosting algorithms in terms of computational complexity or accuracy. The proposed methodology shows the ability to be subject-independent, which means that the system trained on healthy subjects can be efficiently used for ALS patients. Applying this methodology for online speller systems removes the necessity to retrain the P300 speller.


2021 ◽  
Author(s):  
Ayana Mussabayeva ◽  
Prashant Kumar Jamwal ◽  
Muhammad Tahir Akhtar

2021 ◽  
Vol 26 (4) ◽  
pp. 440-451
Author(s):  
Hongma Liu ◽  
Yali Li ◽  
Shengjin Wang

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3961
Author(s):  
Daniela De Venuto ◽  
Giovanni Mezzina

In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.


Sign in / Sign up

Export Citation Format

Share Document