scholarly journals Predictive Control-Based Completeness Analysis and Global Calibration of Robot Vision Features

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jingjing Lou

This paper provides an in-depth study and analysis of robot vision features for predictive control and a global calibration of their feature completeness. The acquisition and use of the complete macrofeature set are studied in the context of a robot task by defining the complete macrofeature set at the level of the overall purpose and constraints of the robot vision servo task. The visual feature set that can fully characterize the macropurpose and constraints of a vision servo task is defined as the complete macrofeature set. Due to the complexity of the task, a part of the features of the complete macrofeature set is obtained directly from the image, and another part of the features is obtained from the image by inference. The task is guaranteed to be completely based on a robust calibration-free visual serving strategy based on interference observer that is proposed to complete the visual serving task with high performance. To address the problems of singular values, local minima, and insufficient robustness in the traditional scale-free vision servo algorithm, a new scale-free vision servo method is proposed to construct a dual closed-loop vision servo structure based on interference observer, which ensures the closed-loop stability of the system through the Q-filter-based interference observer, while estimating and eliminating the interference consisting of hand-eye mapping model uncertainty and controlled robot input interference. The equivalent interference consisting of hand-eye mapping model uncertainty, controlled robot input interference, and detection noise is estimated and eliminated to obtain an inner-loop structure that presents a nominal model externally, and then an outer-loop controller is designed according to the nominal model to achieve the best performance of the system dynamic performance and robustness to optimally perform the vision servo task.

2019 ◽  
Vol 52 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Linhan Ouyang ◽  
Jianxiong Chen ◽  
Yizhong Ma ◽  
Chanseok Park ◽  
Jionghua (Judy) Jin

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Bhavnesh Panchal ◽  
S. E. Talole

A novel continuous time predictive control and generalized extended state observer (GESO) based acceleration tracking pitch autopilot design is proposed for a tail controlled, skid-to-turn tactical missile. As the dynamics of missile are significantly uncertain with mismatched uncertainty, GESO is employed to estimate the state and uncertainty in an integrated manner. The estimates are used to meet the requirement of state and to robustify the output tracking predictive controller designed for nominal system. Closed loop stability for the controller-observer structure is established. An important feature of the proposed design is that it does not require any specific information about the uncertainty. Also the predictive control design yields the feedback control gain and disturbance compensation gain simultaneously. Effectiveness of GESO in estimation of the states and uncertainties and in robustifying the predictive controller in the presence of parametric uncertainties, external disturbances, unmodeled dynamics, and measurement noise is illustrated by simulation.


Sign in / Sign up

Export Citation Format

Share Document