scholarly journals T-Shaped Control Plate Effect on Flow past a Square Cylinder at Low Reynolds Numbers

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Maryam Shahab ◽  
Shams Ul-Islam ◽  
Ghazala Nazeer

In this study, the influence of the T-shaped control plate on the fluid flow characteristics around a square cylinder for a low Reynolds numbers flow is systematically presented. The introduction of upstream attached T-shaped control plate is novel of its kind as T-shaped control plate used for the first time rather than the other passive control methods available in the literature. The Reynolds numbers (Re) are chosen to be Re = 100, 150, 200, and 250, and the T-shaped control plate of the same width with varying length is considered. A numerical investigation is performed using the single-relaxation-time lattice Boltzmann method. The numerical results reveal that there exists an optimum length of T-shaped control plate for reducing fluid forces. This optimum length was found to be 0.5 for Re = 100, 150, and 200 and 2 for Re = 250. At this optimum length, the fluctuating drag forces acting on the cylinder are reduced by 134%, 1375, 133%, and 136% for Re = 100, 150, 200, and 250, respectively. Instantaneous and time-averaged flow fields were also presented for some selected cases in order to identify the three different flow regimes around T-shaped control plate and square cylinder system.

Meccanica ◽  
2020 ◽  
Vol 55 (5) ◽  
pp. 1037-1059
Author(s):  
Bo An ◽  
J. M. Bergadà ◽  
F. Mellibovsky ◽  
W. M. Sang ◽  
C. Xi

Author(s):  
Chia-Che Wu ◽  
Ping-Kuo Tseng ◽  
Ching-Hsiu Tsai

Usually microorganisms, molecules, or viruses in the fluidic environment are at very low Reynolds numbers because of tiny diameters. At very low Reynolds numbers, viscous forces of molecules and viruses will dominate. Those micro- or nanoparticles will stop moving immediately when flows cease and drag forces disappear, those phenomena were discovered by the fluorescent particle experiment. Of course, molecules and viruses are still subject to Brownian motion and move randomly. In order to increase the adhesion density of micro- and nanoparticles on sensor’s surface, designs of the flow movements in microfluidic channel is proposed. Adhesion density of linker 11-mercaptoundecanoic acid (MUA) and Turnip yellow mosaic virus (TYMV) with specific quantum dots were measured by confocal microscope. Fluorescent intensity and coverage of quantum dots are used to identify the adhesion density quantitatively. Results show that TYMV and MUA layers disperse randomly by dipping method. Fluorescent intensity of quantum dots; i.e. relative to the amount of MUA and TYMV; were 2.67A.U. and 19.13A.U., respectively, in W-type microfluidic devices to contrast just 1.00A.U. and 1.00A.U., respectively, by dipping method. Coverage of MUA and TYMV were 80∼90% and 70∼90%, respectively, in W-type microfluidic channel to contrast just 20∼50% and 0∼10%, respectively, by dipping method.


2009 ◽  
Vol 61 (6) ◽  
pp. 658-682 ◽  
Author(s):  
A. P. Singh ◽  
A. K. De ◽  
V. K. Carpenter ◽  
V. Eswaran ◽  
K. Muralidhar

Sign in / Sign up

Export Citation Format

Share Document