scholarly journals Investigation of Baryons in the Hypercentral Quark Model

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
N. Tazimi ◽  
P. Sadeghi Alavijeh

In the present study, we consider baryons as three-body bound systems according to the hypercentral constituent quark model in configuration space and solve the three-body Klein-Gordon equation. Then, we analyze perturbative spin-dependent and isospin-dependent interaction effects. To find the analytical solution, we use screened potential and calculate the eigenfunctions and eigenvalues of some baryons. We consider exclusive semileptonic decays of bottom and charm baryons and apply the differential decay width with the Isgur-Wise function and arrive at the rates for some semileptonic baryon decays. The results prove more enhanced compared to recent works and comply well with the experimental data.

2015 ◽  
Vol 24 (05) ◽  
pp. 1550032 ◽  
Author(s):  
M. Aslanzadeh ◽  
A. A. Rajabi

In this paper, we have treated the light baryons as a relativistic three-body bound system. Inspired by lattice QCD calculations, we treated baryons as a spin-independent three-quark system within a relativistic three-quark model based on the three-particle Klein–Gordon equation. We presented the analytical solution of three-body Klein–Gordon equation with employing the constituent quark model based on a hypercentral approach through which two- and three-body forces are taken into account. Herewith the average energy values of the up, down and strange quarks containing multiplets are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the generalized Gürsey Radicati mass formula. The considered SU(6)-invariant potential is popular "Coulomb-plus-linear" potential and the strange and non-strange baryons spectra are in general well reproduced.


2021 ◽  
Vol 36 (39) ◽  
Author(s):  
N. Tazimi ◽  
A. Ghasempour

In this study, we consider baryons as three-body bound systems according to hypercentral constituent quark model in configuration space and solve three-body Klein–Gordon equation. Then we analyze perturbative spin-dependent and isospin-dependent interaction effects. To find the analytical solution, we used screened potential and calculate the eigenfunctions and eigenvalues of triply heavy baryons by using Nikiforov–Uvarov method. We compute the ground and excited state masses of triply heavy baryons with quantum numbers [Formula: see text], [Formula: see text], [Formula: see text] via constituent quark model approach.


2010 ◽  
Vol 25 (24) ◽  
pp. 2077-2088 ◽  
Author(s):  
W. ZHENG ◽  
H. R. PANG

In the framework of constituent quark model, mass spectra of the ground-state baryons consisting of three or two heavy (b or c) and one light (u, d or s) quarks are calculated by solving three-body Faddeev equations. The results imply that, it is possible to obtain a unified model to describe heavy baryons spectra, as well as meson and SU(3) octet and decuplet baryon spectra. We find that, when taking into account the relativistic correction quark–diquark approximation and three-body Faddeev approach tend to give similar predictions for heavy–light systems. We also study the spin splitting of JP = (1/2+) and JP = (3/2+).


1992 ◽  
Vol 343 (3) ◽  
pp. 331-336 ◽  
Author(s):  
B. Desplanques ◽  
C. Gignoux ◽  
B. Silvestre-Brac ◽  
P. Gonz�lez ◽  
J. Navarro ◽  
...  

1994 ◽  
Vol 49 (7) ◽  
pp. 3417-3425 ◽  
Author(s):  
Taruni Uppal ◽  
R. C. Verma ◽  
M. P. Khanna

2018 ◽  
Vol 46 ◽  
pp. 1860037 ◽  
Author(s):  
Zahra Ghalenovi

In this work, we study the properties of the heavy baryons with strangeness employing a constituent quark model in the hypercentral approach. The potential model considers the interactions arising the one-gluon exchange, Goldstone boson exchange and confinement, aspects of underlying theory, quantum chromodynamics (QCD). By solving three-body Schrodinger equation of baryonic system, we obtain the ground as well as the corresponding energy eigenvalues of the system. Using the obtained energies, we calculate the baryon spectrum. We extend our scheme to predict the radiative decay width of the charm baryons. A comparison of our results with those of other works and experimental data is also presented.


2009 ◽  
Vol 24 (32) ◽  
pp. 2631-2637 ◽  
Author(s):  
NASRIN SALEHI ◽  
ALI AKBAR RAJABI

The static properties of protons are useful for understanding the quark structure of the proton. In his work we have introduced the hypercentral constituent quark model and isospin dependent potentials. Here constituent quarks interact with each other via a potential in which we have taken into account the three-body force effect and the standard two-body potential contributions. According to our model the static properties of protons containing u and d quarks are better than the other models and closer to experimental results. The two key ingredients of this improvement are the effective quark–gluon hypercentral potentials, and hyperfine interaction and isospin dependence potential. Recently, Schrödinger equation has been solved by Giannini but we have solved the Dirac equation exact analytically and we have shown that a considerable improvement in the description of the static properties of proton is obtained with an isospin dependent potential and the complete interaction including spin and isospin terms reproduces the position of the quark.


Sign in / Sign up

Export Citation Format

Share Document