constituent quark model
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 42)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 258 ◽  
pp. 03004
Author(s):  
Chandni Menapara ◽  
Ajay Kumar Rai

Hadron Spectroscopy provides a realm to study the internal quark dynamics within the hadrons through phenomenological, theoretical as well as experimental approaches. In the present article, an attempt has been made to exploit the nucleon N resonances using a non-relativistic hypercentral Constituent Quark Model (hCQM). The properties are studied based on the linear nature of confining part of the potential. The 1S-5S, 1P-3P, 1D-2D and 1F states mostly with four star labelled resonances are explored again with the separation of charge states using different constituent quark masses. Also, Regge trajectories for some obtained states are plotted for examining the linear nature.


2021 ◽  
Vol 36 (39) ◽  
Author(s):  
N. Tazimi ◽  
A. Ghasempour

In this study, we consider baryons as three-body bound systems according to hypercentral constituent quark model in configuration space and solve three-body Klein–Gordon equation. Then we analyze perturbative spin-dependent and isospin-dependent interaction effects. To find the analytical solution, we used screened potential and calculate the eigenfunctions and eigenvalues of triply heavy baryons by using Nikiforov–Uvarov method. We compute the ground and excited state masses of triply heavy baryons with quantum numbers [Formula: see text], [Formula: see text], [Formula: see text] via constituent quark model approach.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Xin Jin ◽  
Yuheng Wu ◽  
Xuejie Liu ◽  
Hongxia Huang ◽  
Jialun Ping ◽  
...  

AbstractIn the framework of the chiral quark model (ChQM), we systematically investigate the strange hidden-charm tetraquark systems $$cs{\bar{c}}{\bar{u}}$$ c s c ¯ u ¯ with two structures: $$q{\bar{q}}-q{\bar{q}}$$ q q ¯ - q q ¯ and $$qq-{\bar{q}}{\bar{q}}$$ q q - q ¯ q ¯ . The bound-state calculation shows that there is no any bound state in present work, which excludes the molecular state explanation ($$D^{0}D_{s}^{*-}/D^{*0}D_{s}^{-}/D^{*0}D_{s}^{*-}$$ D 0 D s ∗ - / D ∗ 0 D s - / D ∗ 0 D s ∗ - ) of the reported $$Z_{cs}(3985)^{-}$$ Z cs ( 3985 ) - or $$Z_{cs}(4000)^{+}$$ Z cs ( 4000 ) + . However, the effective potentials for the $$cs-{\bar{c}}{\bar{u}}$$ c s - c ¯ u ¯ systems show the possibility of some resonance states. By applying a stabilization calculation and coupling all channels of both two structures, two new resonance states are obtained, which are the $$IJ^{P}=\frac{1}{2} 0^{+}$$ I J P = 1 2 0 + state with the energy around 4111–4116 MeV and the $$IJ^{P} =\frac{1}{2} 1^{+}$$ I J P = 1 2 1 + state with energy around 4113–4119 MeV, respectively. Both of them are worthy of search in future experiments. Our results show that the coupling calculation between the bound channels and open channels is indispensable to provide the necessary information for experiments to search for exotic hadron states.


2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Pablo G. Ortega ◽  
Jorge Segovia ◽  
Francisco Fernández

2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Jin-Bao Wang ◽  
Gang Li ◽  
Cheng-Rong Deng ◽  
Chun-Sheng An ◽  
Ju-Jun Xie

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
N. Tazimi ◽  
P. Sadeghi Alavijeh

In the present study, we consider baryons as three-body bound systems according to the hypercentral constituent quark model in configuration space and solve the three-body Klein-Gordon equation. Then, we analyze perturbative spin-dependent and isospin-dependent interaction effects. To find the analytical solution, we use screened potential and calculate the eigenfunctions and eigenvalues of some baryons. We consider exclusive semileptonic decays of bottom and charm baryons and apply the differential decay width with the Isgur-Wise function and arrive at the rates for some semileptonic baryon decays. The results prove more enhanced compared to recent works and comply well with the experimental data.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 337
Author(s):  
Zalak Shah ◽  
Amee Kakadiya ◽  
Keval Gandhi ◽  
Ajay Kumar Rai

We revisited the mass spectra of the Ξcc++ baryon with positive and negative parity states using Hypercentral Constituent Quark Model Scheme with Coloumb plus screened potential. The ground state of the baryon has been determined by the LHCb experiment, and the anticipated excited state masses of the baryon have been compared with several theoretical methodologies. The transition magnetic moments of all heavy baryons Ξcc++, Ξcc+, Ωcc+, Ξbb0, Ξbb−, Ωbb−, Ξbc+, Ξbc0, Ωbc0 are also calculated and their values are −1.013 μN, 1.048 μN, 0.961 μN, −1.69 μN, 0.73 μN, 0.48 μN, −1.39 μN, 0.94 μN and 0.710 μN, respectively.


2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Jin-Bao Wang ◽  
Gang Li ◽  
Chun-Sheng An ◽  
Ju-Jun Xie

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Bing Chen ◽  
Si-Qiang Luo ◽  
Xiang Liu

AbstractThe mass gaps existing in the discovered single heavy flavor baryons are analyzed, which show some universal behaviors. Under the framework of a constituent quark model, we quantitatively explain why such interesting phenomenon happens, when these established excited heavy baryons are regarded as the $$\lambda $$ λ -mode excitations. Based on the universal behaviors of the discussed mass gaps, we may have three implications including the prediction of the masses of excited $$\Xi _b^0$$ Ξ b 0 baryons which are still missing in the experiment. For completeness, we also discuss the mass gaps of these $$\rho $$ ρ -mode excited single heavy flavor baryons.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 252
Author(s):  
Francisco Fernández ◽  
Jorge Segovia

Chiral symmetry, and its dynamical breaking, has become a cornerstone in the description of the hadron’s phenomenology at low energy. The present manuscript gives a historical survey on how the quark model of hadrons has been implemented along the last decades trying to incorporate, among other important non-perturbative features of quantum chromodynamics (QCD), the dynamical chiral symmetry breaking mechanism. This effort has delivered different models such as the chiral bag model, the cloudy bag model, the chiral quark model or the chiral constituent quark model. Our main aim herein is to provide a brief introduction of the Special Issue “Advances in Chiral Quark Models” in Symmetry and contribute to the clarification of the differences among the above-mentioned models that include the adjective chiral in their nomenclature.


Sign in / Sign up

Export Citation Format

Share Document