scholarly journals Analytical Solutions for Girder Distribution Factor in Steel-Concrete Composite Girders with the Effect of Parapets

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zejun Zhang ◽  
Yongjian Liu ◽  
Bowen Feng ◽  
Yinping Ma ◽  
Guojing Zhang

The existing studies have shown that parapets have great influence on the girder distribution factor (GDF) of bridges. However, there is no method in the design guide to estimate the GDF considering the effect of parapets. This research aims to develop a simplified method for estimating the GDF by considering the effect of parapets. First, a simply supported steel-concrete composite girder bridge was tested to investigate the effect of parapets on the GDF. Then, finite-element (FE) model was established and verified by the field test data of strain and deflection. In addition, error study showed that the bending stiffness of the bridge was increased by about 92% and 19.1%, respectively, due to the effects of parapet and continuous layer. As the effect of the continuous layer on each girder was relatively uniform, the simplified method was optimized only considering the effect of the parapet. Finally, the effect of the parapet on the GDF was compared and discussed. Considering the effect of the parapet, the GDF of the exterior girder calculated by the simplified method and FE analysis decreased by about 26.92% and 23.53%, respectively, and the adjacent interior girder decreased by about 15.22% and 12.77%, respectively. Comparing the GDF calculated by the AASHTO LRFD specifications, the GDF calculated by the simplified method decreased by about 30.77% in the exterior girder and 41.30% in the interior girder, respectively. The results indicate that the method of calculating the GDF without considering the effect of the parapet in AASHTO LRFD specifications is conservative. The GDF calculated by the simplified method was basically close to the field test results, meaning that the proposed simplified method considering the effect of the parapet was relatively accurate.

2012 ◽  
Vol 226-228 ◽  
pp. 1547-1550
Author(s):  
Yu Liang He ◽  
Yi Qiang Xiang ◽  
He Xin Ke ◽  
Li Si Liu

Taking the four-span 40m simply supported multi-box steel-concrete composite girder bridge in the ProjectⅡ of Qiushi Expressway in Hangzhou as the background, this paper analyzed the static and dynamic behaviour of the bridge by FEM, then finished a field test study for the bridge. Finally, comparing the test values with the results obtained from FEM analysis, it was verified that the rigidity transverse beam method with infinte stiffness is also adaptive to caculating and predicting the load transverse distribution of the multi-box steel-concrete composite bridge. Steel diaphragm and stiffening rib of the multi-box steel- concrete composite bridge can improve the flexural capacity of bridge to some extent, so these contributions should be reasonably considered during the design stage in order to reduce the engineering cost. The measured modes agree well with the results from FEM.


2016 ◽  
Vol 691 ◽  
pp. 96-107
Author(s):  
Tomas J. Zivner ◽  
Rudolf B. Aroch ◽  
Michal M. Fabry

This paper deals with the slab concreting sequence and its influence on a composite steel and concrete continuous highway girder bridge. The bridge has a symmetrical composite two-girder structure with three spans of 60 m, 80 m, 60 m (i.e. a total length between abutments of 200.0 m). The horizontal alignment is straight. The top face of the deck is flat. The bridge is straight. The transverse cross-section of the slab is symmetrical with respect to the axis of the bridge. The total slab width is 12 m. The slab thickness varies from 0.4 m on main girders to 0.25 m at its free edges and 0.3075 m at its axis of symmetry. The center-to-center spacing between main girders is 7 m and the slab cantilever on either side is 2.5 m long. Every main girder has a constant depth of 2800 mm and the thicknesses of the upper and lower flanges are variable. The lower flange is 1200 mm wide whereas the upper flange is 1000 mm wide. The two main girders have transverse bracing at abutments and at internal supports and at regular intervals in every span. The material of concrete slab is C35/45 and of steel members S355. The on-site pouring of the concrete slab segments is performed by casting them in a selected order and is done after the launching of the steel two girder bridge. The paper presents several concreting sequences and their influence on the normal stresses and deflections of the composite bridge girder.


Author(s):  
Edward A. Baron

<p>This work consists in identify and assess the properties related to material, geometry and physic sources, in a pre-stressed concrete bridge through a surrogate model. The use of this mathematical model allows to generate a relationship between bridge properties and its dynamic response, with the purpose to develop a tool to predict the analytical values of the studied properties from measured eigenfrequencies. Therefore, it is introduced the identification of damage scenarios, giving the application for validate the generated metamodel (Artificial Neural Network). A FE model is developed to simulate the studied structure, a Colombian bridge called "El Tablazo", one of the higher in the country of this type (box-girder bridge). Once the damage scenarios are defined, this work allows to indicate the basis for futures plans of structural health monitoring.</p>


2012 ◽  
Vol 178-181 ◽  
pp. 2135-2139
Author(s):  
Shang Min Zheng ◽  
Bing Wen Yang ◽  
Shui Wan

In order to research the influence of web’s shear deformation on the deflection of composite girder bridge with corrugated steel webs in construction, the deflection calculation formulae considering shear deformation were deduced, which was to analyze the background engineering of Chuhe bridge deflection in different load conditions when it was in the maximum cantilever state. Finite element method analysis shows that the calculation formulae are credible and applicable, and also comparative study was done with practical measurement. Results show that the proportion of main deflection caused by shear deformation of web may reach 30% ~ 40%, and the deflection caused by shear deformation needs to be considered in the process of construction monitering.


Author(s):  
Hyo-Gyoung Kwak ◽  
Joungrae Kim

Load distribution factor at concrete girder bridges and steel girder bridges are analyzed with finite element method to see effect of span length and cross beam to load distribution factor. Span lengths of analyzed bridge models are 30m, 40m, 50m and 60m. The number of intermediate cross beam is increased from one to until distance between cross beams becomes 5m. The finite element analysis results show that concrete girder and steel girder can use same load distribution factor and span length doesn’t affect to load distribution factor. Even though load distribution factor in interior girders is not influenced by cross beam, in exterior girders it is influenced by cross beam. Effect of cross beam in exterior girder is influenced by the number of lanes and distance from exterior girder to curb. Since design code introduces conservative load distribution factor, economically improved load distribution factor is proposed. The proposed load distribution factor includes cross beam effect with the number of lanes and distance from exterior girder to curb. The proposed equation is compared with AASHTO code and grillage method which is well-known method to calculate load distribution. The comparison results showed that the proposed equation is more efficient and useful than AASHTO and safer than the grillage method.


2011 ◽  
Vol 255-260 ◽  
pp. 1244-1247
Author(s):  
Yi Zhou Zhuang ◽  
Tao Ji ◽  
Bao Chun Chen

Based on FEA for three bridge models with varying skew angles, the effect of skew angle on the design moment and shear of skewed bridge structures was studied and also compared to AASHTO specifications. The results show that, generally, ASSHTO-LFD covers FEM in moment distribution factor, but a little less in shear distribution factor, and that, however, AASHTO-LRFD reduces moment distribution factor below AASHTO-LFD and near to FEM, but increases shear distribution factor a lot beyond AASHTO-LFD and FEM.


Sign in / Sign up

Export Citation Format

Share Document