derivative order
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 28)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
S. H. Elhag ◽  
Fatimah S. Bayones ◽  
A. A. Kilany ◽  
S. M. Abo-Dahab ◽  
Emad A.-B. Abdel-Salam ◽  
...  

The present research paper illustrates how noninteger derivative order analysis affects the reflection of partial thermal expansion waves under the generalized theory of plane harmonic wave reflection from a semivacuum elastic solid material with both gravity and magnetic field in the three-phase lag model (3PHL). The main goal for this study is investigating the fractional order impact and the applications related to the orders, especially in biology, medicine, and bioinformatics, besides the integer order considering an external effect, such as electromagnetic, gravity, and phase lags in a microstretch medium. The problem fractional form was formulated, and the boundary conditions were applied. The results were displayed graphically, considering the 3PHL model with magnetic field, gravity, and relaxation time. These findings were an explicit comparison of the effect of the plane wave reflection amplitude with integer derivative order analysis and noninteger derivative order analysis. The fractional order was compared to the correspondence integer order that indicated to the difference between them and agreement with the applications in biology, medicine, and other related topics. This phenomenon has more applications in relation to the biology and biomathematics problems.


2021 ◽  
Vol 5 (4) ◽  
pp. 261
Author(s):  
Silvério Rosa ◽  
Delfim F. M. Torres

A Caputo-type fractional-order mathematical model for “metapopulation cholera transmission” was recently proposed in [Chaos Solitons Fractals 117 (2018), 37–49]. A sensitivity analysis of that model is done here to show the accuracy relevance of parameter estimation. Then, a fractional optimal control (FOC) problem is formulated and numerically solved. A cost-effectiveness analysis is performed to assess the relevance of studied control measures. Moreover, such analysis allows us to assess the cost and effectiveness of the control measures during intervention. We conclude that the FOC system is more effective only in part of the time interval. For this reason, we propose a system where the derivative order varies along the time interval, being fractional or classical when more advantageous. Such variable-order fractional model, that we call a FractInt system, shows to be the most effective in the control of the disease.


2021 ◽  
Vol 53 (7) ◽  
Author(s):  
Djidere Ahmadou ◽  
Houwe Alphonse ◽  
Mibaile Justin ◽  
Gambo Betchewe ◽  
Doka Yamigno Serge ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Janarthanan Ramadoss ◽  
Sajedeh Aghababaei ◽  
Fatemeh Parastesh ◽  
Karthikeyan Rajagopal ◽  
Sajad Jafari ◽  
...  

The fractional calculus in the neuronal models provides the memory properties. In the fractional-order neuronal model, the dynamics of the neuron depends on the derivative order, which can produce various types of memory-dependent dynamics. In this paper, the behaviors of the coupled fractional-order FitzHugh–Nagumo neurons are investigated. The effects of the coupling strength and the derivative order are under consideration. It is revealed that the level of the synchronization is decreased by decreasing the derivative order, and the chimera state emerges for stronger couplings. Furthermore, the patterns of the formed chimeras rely on the order of the derivatives.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yu-tin Huang ◽  
Jin-Yu Liu ◽  
Laurentiu Rodina ◽  
Yihong Wang

Abstract In this paper, we explore the open string amplitude’s dual role as a space-time S-matrix and a 2D holomorphic CFT correlation function. We pursue this correspondence in two directions. First, beginning with a general disk integrand dressed with a Koba-Nielsen factor, we demonstrate that exchange symmetry for the factorization residue of the amplitude forces the integrand to be expandable on SL(2,R) conformal blocks. Furthermore, positivity constraints associated with unitarity imply the SL(2,R) blocks must come in linear combinations for which the Virasoro block emerges at the “kink” in the space of solutions. In other words, Virasoro symmetry arises at the boundary of consistent factorization. Next, we consider the low energy EFT description, where unitarity manifests as the EFThedron in which the couplings must live. The existence of a worldsheet description implies, through the Koba-Nielsen factor, monodromy relations which impose algebraic identities amongst the EFT couplings. We demonstrate at finite derivative order that the intersection of the “monodromy plane” and the four-dimensional EFThedron carves out a tiny island for the couplings, which continues to shrink as the derivative order is increased. At the eighth derivative order, on a three-dimensional monodromy plane, the intersection fixes the width of this island to around 1.5% (of ζ(3)) and 0.2% (of ζ(5)) with respect to the toroidally compactified Type-I super string answer. This leads us to conjecture that the four-point open superstring amplitude can be completely determined by the geometry of the intersection of the monodromy plane and the EFThedron.


2021 ◽  
Author(s):  
Djidere Ahmadou ◽  
Alphonse Houwe ◽  
Justin Mibaile ◽  
Gambo Betchewe ◽  
Serge Y. Doka ◽  
...  

Abstract The resolution of the reduced fractional nonlinear Schrodinger equation obtained from the model describing the wave propagation in the left-handed nonlinear transmission line presented by Djidere et al recently, allowed us in this work through the Adomian decomposition method (ADM) to highlight the behavior and to study the propagation process of the dark and bright soliton solutions with the e ect of the fractional derivative order as well as the Modulation Instability gain spectrum (MI) in the LHNLTL. By inserting fractional derivatives in the sense of Caputo, we used ADM to structure the approximate solitons solutions of the fractional nonlinear Schrodinger equation reduced with fractional derivatives. The pipe is obtained from the bright and dark soliton by the fractional derivatives order (see Figures 2 and 5). By the bias of MI gain spectrum the instability zones occur when the value of the fractional derivative order tends to 1. Furthermore, when the fractional derivative order takes small values, stability zones appear. These results could bring new perspectives in the study of solitary waves in left-handed metamaterials, as the memory e ect could have a better future for the propagation of modulated waves because we also show in this article that the stabilization of zones of the dark and bright solitons could be described by a fractional nonlinear Schrodinger equation with small values of fractional derivatives order. In addition, the obtained signi cant results are new and could nd applications in many research areas such as in the eld of information and communication technologies.


AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035127
Author(s):  
Souleymanou Abbagari ◽  
Alphonse Houwe ◽  
Youssoufa Saliou ◽  
\, Douvagaï ◽  
Yu-Ming Chu ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 341
Author(s):  
Shaobo He ◽  
Hayder Natiq ◽  
Santo Banerjee ◽  
Kehui Sun

By applying the Adams-Bashforth-Moulton method (ABM), this paper explores the complexity and synchronization of a fractional-order laser dynamical model. The dynamics under the variance of derivative order q and parameters of the system have examined using the multiscale complexity algorithm and the bifurcation diagram. Numerical simulation outcomes demonstrate that the system generates chaos with the decreasing of q. Moreover, this paper designs the coupled fractional-order network of laser systems and subsequently obtains its numerical solution using ABM. These solutions have demonstrated chimera states of the proposed fractional-order laser network.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Erdal Karapinar ◽  
Ho Duy Binh ◽  
Nguyen Hoang Luc ◽  
Nguyen Huu Can

AbstractIn this work, we study an initial value problem for a system of nonlinear parabolic pseudo equations with Caputo fractional derivative. Here, we discuss the continuity which is related to a fractional order derivative. To overcome some of the difficulties of this problem, we need to evaluate the relevant quantities of the Mittag-Leffler function by constants independent of the derivative order. Moreover, we present an example to illustrate the theory.


Sign in / Sign up

Export Citation Format

Share Document