scholarly journals Extent and Rate of Deforestation and Forest Degradation (1986–2016) in West Bugwe Central Forest Reserve, Uganda

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fatuma Mutesi ◽  
John Robert Stephen Tabuti ◽  
David Mfitumukiza

Understanding the extent of land cover change and the forces behind land cover changes is essential in designing appropriate restoration strategies. Land cover changes at local scales or the factors that lead to cover change have not been documented for much of Uganda. We undertook this study in West Bugwe Central Forest Reserve (WBCFR) to fill this gap. We used remote sensing to determine land cover changes for a 30-year period, 1986–2016, and an interview survey to investigate the drivers of these changes. Our results show that the forest in this reserve has declined extensively by over 82% from 1,682 ha to 311 ha corresponding to an average change of −1.18% per year. The wetland has also been extensively degraded. Both the forest and wetland have transitioned into shrub land. The key drivers that have been highlighted by the survey are poverty (86%), population growth (56%), and associated harvesting of woody products (86%) for subsistence and income generation. We conclude that the forest in WBCFR has been extensively and rapidly deforested and degraded by humans.

Author(s):  
Adesoji Akinwumi Adeyemi ◽  
Farouq Maku Owolabi

Remote sensing/GIS techniques are a versatile tool for x-raying serial forest structural changes in retrospect. It would be impossible to evaluate past occurrences and changes in forest extents in past decades at Effan Forest Reserve without non-conventional means. Therefore, we adopted remote sensing technology using Landsat images to evaluate land-use change and degradation rates in the area with a view to ascertaining causal factors for possible minimization of forest degradation in Effan Forest Reserve. Land-use/land-cover changes were analyzed using USGS-Landsat TM and ETM images of 1987, 2002, 2014 and 2019. Field-data were collected using handheld GPS receiver and spatial statistical analyses were conducted using the ground control points (GCPs). For inventory data, a systematic sampling technique was adopted using ten 1.05 km-transects at 500 m intervals. A total of 50 sample plots of 50 × 50 m were used. All tree species with Dbh ≥10 cm were enumerated. Nineteen tree species in ten families were encountered with Vitellaria paradoxa as the most-frequently occurring species in the area. IUCN-listed endangered Pterocarpus erinaceus, hitherto abundant in the area, was rarely encountered during the survey, while Vitellaria paradoxa is gradually shrinking, going the relative abundance in the area. The result further showed that primary and secondary forests decreased considerably by 258.03 ha (46.72%) and 9.18 ha (3.63%), respectively, with a total forest loss of 50.3% in 32 years (8.4 hayr-1, 1.6% per annum). While forest plantation size doubled by 369.72 ha within the period. This is worrisome as the remaining fragmented forests appeared to be on the decline, except the riparian vegetation, due to inaccessibility to the riparian by loggers. It thus appeared that forest protection approaches were ineffective. Increased protection efforts could save this forest reserve, and the concerned authority should consider a focused-enrichment planting involving indigenous species for ecosystem-repair.


2021 ◽  
Vol 17 (1) ◽  
pp. 12-26
Author(s):  
A.F. Chukwuka ◽  
A. Alo ◽  
O.J. Aigbokhan

This study set out to assess the dynamic characteristics of the Ikere forest reserve landscape between 1985 and 2017 using remote sensing data and spatial metrics. Landscape of the study area maintained complex patterns of spatial heterogeneity over the years. Forest cover loss to other land cover types results in new large non-forest area at increasing rate. As at the year 2017, the changes in land cover types were not yet at equilibrium, thus the need to determine the future forest cover extent using a three-way markov Chain model. The decrease in number of patches of forest land (NumP) with increase in its mean patch size (MPS) shows that the forest is becoming a single unit probably due to clearing of existing patches of forest trees. The decrease in class diversity and evenness (SDI and SEI) of the general landscape over the years strengthens this assertion. The findings of this study would be very helpful to government and other stakeholders responsible for ensuring sustainable forest and general environment. Keyword: Landscape, Spatial metrics, sustainable forest and Environment


Author(s):  
O. S. Olokeogun ◽  
K. Iyiola ◽  
O. F. Iyiola

Mapping of LULC and change detection using remote sensing and GIS techniques is a cost effective method of obtaining a clear understanding of the land cover alteration processes due to land use change and their consequences. This research focused on assessing landscape transformation in Shasha Forest Reserve, over an 18 year period. LANDSAT Satellite imageries (of 30 m resolution) covering the area at two epochs were characterized into five classes (Water Body, Forest Reserve, Built up Area, Vegetation, and Farmland) and classification performs with maximum likelihood algorithm, which resulted in the classes of each land use. <br><br> The result of the comparison of the two classified images showed that vegetation (degraded forest) has increased by 30.96 %, farmland cover increased by 22.82 % and built up area by 3.09 %. Forest reserve however, has decreased significantly by 46.12 % during the period. <br><br> This research highlights the increasing rate of modification of forest ecosystem by anthropogebic activities and the need to apprehend the situation to ensure sustainable forest management.


2019 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Zachary Gichuru Mainuri ◽  
John M. Mironga ◽  
Samuel M. Mwonga

Drivers of land use change were captured by the use of DPSIR model where Drivers (D) represented human needs, Pressures (P), human activities, State (S), the ecosystem, Impact (I) services from the ecosystem and Response (R), the decisions taken by land users. Land sat MSS and Land sat ETM+ (path 185, row 31) were used in this study. The Land sat ETM+ image (June 1987, May, 2000 and July, 2014) was downloaded from USGS Earth Resources Observation Systems data website. Remote sensing image processing was performed by using ERDAS Imagine 9.1. Two land use/land cover (LULC) classes were established as forest and shrub land. Severe land cover changes was found to have occurred from 1987-2000, where shrub land reduced by -19%, and forestry reduced by -72%. In 2000 – 2014 shrub land reduced by-45%, and forestry reduced by -64%. Forestry and shrub land were found to be consistently reducing.


Sign in / Sign up

Export Citation Format

Share Document