Remote sensing and GIS forest landscape assessment for sustainable forest management

2021 ◽  
Vol 17 (1) ◽  
pp. 12-26
Author(s):  
A.F. Chukwuka ◽  
A. Alo ◽  
O.J. Aigbokhan

This study set out to assess the dynamic characteristics of the Ikere forest reserve landscape between 1985 and 2017 using remote sensing data and spatial metrics. Landscape of the study area maintained complex patterns of spatial heterogeneity over the years. Forest cover loss to other land cover types results in new large non-forest area at increasing rate. As at the year 2017, the changes in land cover types were not yet at equilibrium, thus the need to determine the future forest cover extent using a three-way markov Chain model. The decrease in number of patches of forest land (NumP) with increase in its mean patch size (MPS) shows that the forest is becoming a single unit probably due to clearing of existing patches of forest trees. The decrease in class diversity and evenness (SDI and SEI) of the general landscape over the years strengthens this assertion. The findings of this study would be very helpful to government and other stakeholders responsible for ensuring sustainable forest and general environment. Keyword: Landscape, Spatial metrics, sustainable forest and Environment

Author(s):  
O. S. Olokeogun ◽  
K. Iyiola ◽  
O. F. Iyiola

Mapping of LULC and change detection using remote sensing and GIS techniques is a cost effective method of obtaining a clear understanding of the land cover alteration processes due to land use change and their consequences. This research focused on assessing landscape transformation in Shasha Forest Reserve, over an 18 year period. LANDSAT Satellite imageries (of 30 m resolution) covering the area at two epochs were characterized into five classes (Water Body, Forest Reserve, Built up Area, Vegetation, and Farmland) and classification performs with maximum likelihood algorithm, which resulted in the classes of each land use. <br><br> The result of the comparison of the two classified images showed that vegetation (degraded forest) has increased by 30.96 %, farmland cover increased by 22.82 % and built up area by 3.09 %. Forest reserve however, has decreased significantly by 46.12 % during the period. <br><br> This research highlights the increasing rate of modification of forest ecosystem by anthropogebic activities and the need to apprehend the situation to ensure sustainable forest management.


2020 ◽  
Author(s):  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA


2019 ◽  
Vol 75 ◽  
pp. 02005
Author(s):  
Elena Fedotova

The current state of the land cover has been estimated in the territories where in different years (1885, 1955, 1995) the forests were damaged by Siberian silkmoth. Dark-needle taiga is restored through the change of tree species. In 20 years in areas of dark-needle taiga there are graminoid communities, in 60 years we have deciduous forests there, and in 130 - dark needle forests, but not everywhere.


2005 ◽  
Vol 81 (2) ◽  
pp. 214-221 ◽  
Author(s):  
M D Gillis ◽  
A Y Omule ◽  
T. Brierley

A new national forest inventory is being installed in Canada. For the last 20 years, Canada's forest inventory has been a compilation of inventory data from across the country. Although this method has a number of advantages, it lacks information about the nature and rate of changes to the resource, and does not permit projections or forecasts. To address these limitations a new National Forest Inventory (NFI) was developed to monitor Canada's progress in meeting a commitment towards sustainable forest management, and to satisfy requirements for national and international reporting. The purpose of the new inventory is to "assess and monitor the extent, state and sustainable development of Canada's forests in a timely and accurate manner." The NFI consists of a plot-based system of permanent observational units located on a national grid. A combination of ground plot, photo plot and remote sensing data are used to capture a set of basic attributes that are used to derive indicators of sustainability. To meet the monitoring needs a re-measurement strategy and framework to guide the development of change estimation procedures has been worked out. A plan for implementation has been drafted. The proposed plan is presented and discussed in this paper. Key words: Canada, forest cover, inventory, monitoring, National Forest Inventory, re-measurement, panel


2020 ◽  
Author(s):  
Ismael Abdulrahman Ismael Abdulrahman Abdulrahman ◽  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA.


2020 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Ashti I. Abdulrahman ◽  
Shamal A. Ameen

The process of spatiotemporal changes in land use land cover (LULC) and predicting their future changes are highly important for LULC managers. one of the most important challenges in LULC studies is considered to be the creation of simulation of future change in LULC that involve spatial modeling. the purpose of this study is to use GIS and remote sensing to classify LULC classes in Duhok district between 1999 and 2018, and their results calculated using an integrated cellular automaton and ca-markov chain model to simulate LULC changes in 2033. in this study, satellite images from landsat7 ETM and landsat8 oli used for Duhok district which is located in the northern part of Iraq obtained from united states geological survey (USGS) for the periods (1999 and 2018) analyzed using remote sensing and GIS techniques in addition to the ground control points, for each class 60 ground points have taken. to simulate future LULC changes for 2033, integrated approaches of cellular automata and ca-markov models utilized in Idrisi selva software. the outcomes demonstrate that Duhok district has experienced a total of 184.91km changes during the period (table 4). the prediction also indicates that the changes will equal to 235.4 km by 2033 (table 8). soil and grass constitute the majority of changes among LULC classes and are increasing continuously. the achieved kappa values for the model accuracy assessment higher than 0.93 and 0.85 for 1999 and 2018 respectively showed the model’s capability to forecast future LULC changes in Duhok district. thus, analyzing trends of LULC changes from past to now and predict future applying ca-markov model can play an important role in land use planning, policy making, and managing randomly utilized LULC classes in the proposed study area.


2011 ◽  
Vol 4 (4) ◽  
pp. 993-1010 ◽  
Author(s):  
B. Poulter ◽  
P. Ciais ◽  
E. Hodson ◽  
H. Lischke ◽  
F. Maignan ◽  
...  

Abstract. The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10–20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.


2021 ◽  
Vol 25 (7) ◽  
pp. 1257-1262
Author(s):  
E.O. Toyinbo ◽  
R.A. Fasasi ◽  
C.F. Agbor ◽  
C.O. Fakorede

Mankind’s existence and modification of the landscape have had a profound effect on the natural environment. Anthropogenic activities such as agriculture, mining, deforestation and construction have influenced the shifting patterns of land use. This has resulted in a significant effect on local weather and climate. The use of remote sensing data in recent times has been of immense help in monitoring the changing pattern of vegetation. Therefore this study utilized remote sensing and geographic information system (GIS) methods to identify factors responsible for land use land cover (LULC) changes in Oluwa Forest Reserve between 1984 and 2017. The result showed that Primary forest was reduced by about 5% between 1984 and 2000 and by about 12% between 2000 and 2017 and the non-forest got increased by about 4% and 2% from 1984 to 2000 and from 2000 to 2017 respectively. Future forecast shows that primary forest will decrease by about 3% while the non-forest will increase by 5% by 2034. The results also revealed that the changes in forest cover between 2000 and 2017 were actively influenced by the closeness of settlements to the forest. It is therefore recommended that the findings of this study should be adopted by relevant authorities as a useful forest management tool.


2014 ◽  
Vol 7 (1) ◽  
pp. 073457 ◽  
Author(s):  
Cong Wang ◽  
Hong-Yu Liu ◽  
Ying Zhang ◽  
Yu-feng Li

Sign in / Sign up

Export Citation Format

Share Document