scholarly journals Medical Text Classification Using Hybrid Deep Learning Models with Multihead Attention

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sunil Kumar Prabhakar ◽  
Dong-Ok Won

To unlock information present in clinical description, automatic medical text classification is highly useful in the arena of natural language processing (NLP). For medical text classification tasks, machine learning techniques seem to be quite effective; however, it requires extensive effort from human side, so that the labeled training data can be created. For clinical and translational research, a huge quantity of detailed patient information, such as disease status, lab tests, medication history, side effects, and treatment outcomes, has been collected in an electronic format, and it serves as a valuable data source for further analysis. Therefore, a huge quantity of detailed patient information is present in the medical text, and it is quite a huge challenge to process it efficiently. In this work, a medical text classification paradigm, using two novel deep learning architectures, is proposed to mitigate the human efforts. The first approach is that a quad channel hybrid long short-term memory (QC-LSTM) deep learning model is implemented utilizing four channels, and the second approach is that a hybrid bidirectional gated recurrent unit (BiGRU) deep learning model with multihead attention is developed and implemented successfully. The proposed methodology is validated on two medical text datasets, and a comprehensive analysis is conducted. The best results in terms of classification accuracy of 96.72% is obtained with the proposed QC-LSTM deep learning model, and a classification accuracy of 95.76% is obtained with the proposed hybrid BiGRU deep learning model.

2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


2021 ◽  
Author(s):  
Tong Guo

In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


2021 ◽  
Author(s):  
Tong Guo

In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


2021 ◽  
Author(s):  
Tong Guo

In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


2021 ◽  
Author(s):  
Tong Guo

In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


2019 ◽  
Vol 9 (13) ◽  
pp. 2760 ◽  
Author(s):  
Khai Tran ◽  
Thi Phan

Sentiment analysis is an active research area in natural language processing. The task aims at identifying, extracting, and classifying sentiments from user texts in post blogs, product reviews, or social networks. In this paper, the ensemble learning model of sentiment classification is presented, also known as CEM (classifier ensemble model). The model contains various data feature types, including language features, sentiment shifting, and statistical techniques. A deep learning model is adopted with word embedding representation to address explicit, implicit, and abstract sentiment factors in textual data. The experiments conducted based on different real datasets found that our sentiment classification system is better than traditional machine learning techniques, such as Support Vector Machines and other ensemble learning systems, as well as the deep learning model, Long Short-Term Memory network, which has shown state-of-the-art results for sentiment analysis in almost corpuses. Our model’s distinguishing point consists in its effective application to different languages and different domains.


2021 ◽  
Author(s):  
Tong Guo

In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


2021 ◽  
Author(s):  
Tong Guo

In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


2021 ◽  
Author(s):  
Tong Guo

In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


Sign in / Sign up

Export Citation Format

Share Document