scholarly journals A Practical Solution Model for Transient Pressure Behavior of Multistage Fractured Horizontal Wells with Finite Conductivity in Tight Oil Reservoirs

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pin Jia ◽  
Defeng Wu ◽  
Hengfei Yin ◽  
Zhuang Li ◽  
Linsong Cheng ◽  
...  

Fractured horizontal wells have been widely used to develop unconventional oil and gas reservoirs. In previous studies, most studies on the transient pressure behavior of multistage horizontal wells were based on the assumption of single porosity medium, in which the coupling relationship of natural fractures and artificial fractures was not taken into account or artificial fractures were assumed to be infinitely conductive. In this paper, the fracture is finite conductive, which means that there is flow resistance in the fracture. Based on point-source method and superposition principle, a transient model for multistage fractured horizontal wells, which considers the couple of fracture flow and reservoir seepage, is built and solved with the Laplace transformation. The transient pressure behavior in multistage fractured horizontal wells is discussed, and effects of influence factors are analyzed. The result of this article can be used to identify the response characteristic of fracture conductivity to pressure and pressure differential and provide theoretical basis for effective development of tight oil reservoirs. The findings of this study can help for better understanding of transient pressure behavior of multistage fractured horizontal wells with finite conductivity in tight oil reservoirs.

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jiahang Wang ◽  
Xiaodong Wang ◽  
Wenxiu Dong

The paper developed a new semianalytical model for multiple-fractured horizontal wells (MFHWs) with stimulated reservoir volume (SRV) in tight oil reservoirs by combining source function theory with boundary element idea. The model is first validated by both analytical and numerical model. Then new type curves are established. Finally, the effects of SRV shape, SRV size, SRV permeability, and parameters of hydraulic fractures are discussed. Results show that SRV has great influence on the pressure response of MFHWs; the parameters of fractures, such as fracture distribution, length, and conductivity, also can affect the transient pressure of MFHWs. One novelty of this model is to consider the nonlinear flow around hydraulic fracture tips. The other novelty is the ability to model the shape of the SRV, production behavior of different fractures, and interfaces. Compared to numerical and analytic methods, this model can not only reduce extensive computing processing but also show high accuracy.


Sign in / Sign up

Export Citation Format

Share Document