scholarly journals Sensor Mathematical Model Data Fusion Biobjective Optimization

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Maowen Hou ◽  
Weiyun Wang

Sensors are an important tool to quantify the changes and an important part of the information acquisition system; the performance and accuracy of sensors are more strictly desired. In this paper, a highly sensitive fiber optic sensor for measuring temperature and refractive index is prepared by using femtosecond laser micromachining technology and fiber fusion technology. The multimode fiber is first spliced together with single-mode fiber in a positive pair, and then, the multimode fiber is perforated using a femtosecond laser. The incorporation of data model sensors has led to a rapid increase in the development and application of sensors as well. Based on the design concept and technical approach of the wireless sensor network system, a general development plan of the indoor environmental monitoring system is proposed, including the system architecture and functional definition, wireless communication protocols, and design methods of node applications. The sensor has obvious advantages over traditional electrical sensors; the sensor is resistant to electromagnetic interference, electrical insulation, corrosion resistance, low loss, small size, high accuracy, and other advantages. The upper computer program of the indoor environment monitoring system was developed in a Visual Studio development environment using C# language to implement the monitoring, display, and alarm functions of the indoor environment monitoring system network. The sensor-data model interfusion with each other for mutual integration performs the demonstration of the application.

Author(s):  
X. Zhang ◽  
P. Dai ◽  
Z. Zhao

Abstract. The indoor micro-environment monitoring system of the Forbidden City aims to explore the thresholds of environmental indicators under the presence of coexistence of multiple cultural relics through the analysis of environmental monitoring data and the deterioration of cultural heritiges, and to develop the optimal strategies for the protection and utilization of cultural heritiges. The objects of interest include historic buildings with modernised interior or those used for the storage of movable cultural relics. Several environmental indicators are employed to quantify the dynamic changes of the indoor environment. In order to meet the requirements of 24-hour data collection, real-time data transmission, and easy management and maintenance, the indoor micro-environmental monitoring system has been continuously upgraded and the "LoRa-based Hybrid Self-Organising Network System Deployment Solution" was deployed to satisfy the demands of high precision, low energy consumption, constant stability, and low cost. Taking the Meridian Gate exhibition hall of the Forbidden City during the exhibition "Splendor Forever: Six Centuries of the Forbidden City" as an example, we discussed the relationship between temperature, humidity, carbon dioxide (CO2) concentrations and visitor volumes, and the results provide a basis for optimizing the management of the exhibition. Future improvements to the indoor environment monitoring should focus on strengthening the in-depth mining of data and multi-factor correlation analysis, so as to gradually form a systematic and comprehensive monitoring management system.


2017 ◽  
Vol 13 (08) ◽  
pp. 4
Author(s):  
Yong Jin ◽  
Zhenjiang Qian ◽  
Xiaoshuang Xing ◽  
Lu Shen

ensor nodes vulnerable becomes a major bottleneck restricting the wide application of wireless sensor networks WSNs (Wireless Sensor Networks). In order to satisfy the needs of industrial production and daily living environment monitoring, it is important to improve the survivability of wireless sensor networks in environmental monitoring application. In order to have a reliable environment monitoring system, this paper analyzed the damage types and causes of WSNs and the measurement methods of WSNs survivability. Then, we studied the fault detection method and finally realized the design can improve the survivability of the scheme. The robust guarantee scheme through hardware design and algorithm model, realized the remote wireless communication services and prolonged the network life cycle, so as to improve the survivability of the environmental monitoring system.


2020 ◽  
Vol 11 (4) ◽  
pp. 57-71
Author(s):  
Qiuxia Liu

Using multi-sensor data fusion technology, ARM technology, ZigBee technology, GPRS, and other technologies, an intelligent environmental monitoring system is studied and developed. The SCM STC12C5A60S2 is used to collect the main environmental parameters in real time intelligently. The collected data is transmitted to the central controller LPC2138 through the ZigBee module ATZGB-780S5, and then the collected data is transmitted to the management computer through the GPRS communication module SIM300; thus, the real-time processing and intelligent monitoring of the environmental parameters are realized. The structure of the system is optimized; the suitable fusion model of environmental monitoring parameters is established; the hardware and the software of the intelligent system are completed. Each sensor is set up synchronously at the end of environmental parameter acquisition. The method of different value detection is used to filter out different values. The authors obtain the reliability of the sensor through the application of the analytic hierarchy process. In the analysis and processing of parameters, they proposed a new data fusion algorithm by using the reliability, probability association algorithm, and evidence synthesis algorithm. Through this algorithm, the accuracy of environmental monitoring data and the accuracy of judging monitoring data are greatly improved.


Author(s):  
Mohd Faiz Rohani ◽  
Noor Azurati Ahmad ◽  
Shamsul Sahibuddin ◽  
Salwani Mohd Daud

Global warming is referred to the rise in average surface temperatures on earth primarily due to the Greenhouse Gases (GHG) emissions such as Carbon Dioxide (CO<sub>2</sub>). Monitoring the emissions, either direct or indirect from the industrial processes, is important to control or to minimize their impact on the environment. Most of the existing environmental monitoring system is being designed and developed for normal environment monitoring. Hence, the aim of this project is to develop industrial CO<sub>2 </sub>emission monitoring system which implements industrial Open Platform Communications (OPC) protocol in an embedded microcontroller. The software algorithm based on OPC data format has been designed and programmed into the Arduino microcontroller to interface the sensor data to any existing industrial OPC compliant Supervisory Control and Data Acquisition (SCADA) system<strong>. </strong>The system has been successfully tested in a lab with the suitable environment for real-time CO<sub>2 </sub>emissions measurement. The real-time measurement data has been shown in an industrial SCADA application which indicates successful implementation of the OPC communications protocol.


Sign in / Sign up

Export Citation Format

Share Document