scholarly journals Nerve and Arterial Supply Pattern of the Popliteus Muscle and Clinical Implications

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Anna Jeon ◽  
Ye-Gyung Kim ◽  
Youngjoo Sohn ◽  
Je-Hun Lee

Introduction. The aim of this study was to investigate the nerve and artery supply and the tibial attachment of the popliteus muscle using anatomical methods. Methods. Forty-four nonembalmed and embalmed extremities were dissected for this study. To measure the attachment area of the popliteus, the most prominent points of the medial epicondyle of the femur and the medial malleolus of the tibia were identified before dissection. A line connecting these two prominent points was used as the reference line, with the most prominent point of the medial epicondyle of the femur as the starting point. This study also investigated the area where the popliteus attaches to the bone and the points where nerves and arteries enter the popliteus muscle when it is divided into three equal parts in the coronal plane. Results. The mean length of the reference line was 34.6 ± 2.1   cm . The origin of the popliteus was found to be at a distance of 16.6% to 35.2% on the tibial bone from the proximal region. The popliteus was innervated by only the tibial nerve in 90% of the cases and by the tibial and the sciatic nerves in the remaining 10% of the cases. The inferior medial genicular artery and the posterior tibial artery supplied blood to the popliteus in 90% and 65% of the cases, respectively. When the popliteus muscle was divided into three equal parts in the coronal plane, the nerve and the artery were found to enter the muscle belly in zones II and III and zones I and II in 92% and 98% of the specimens, respectively. Discussion. The anatomical investigation of the popliteus in this study will help identify patients with clinically relevant syndromes.

2020 ◽  
Author(s):  
Yan Zhang ◽  
Xucheng He ◽  
Juan Li ◽  
Ju Ye ◽  
Wenjuan Han ◽  
...  

Abstract Background The display of tibial nerve and its branches in the ankle canal is helpful for the diagnosis of local lesions and compression, and also for clinical observation and surgical planning.The aim of this study was to investigate the feasibility of three-dimensional dual-excitation balanced steady-state free precession sequence (3D-FIESTA-C) multiplanar reconstruction (MPR) display of tibial nerve and its branches of the ankle canal. Methods The subjects were 20 healthy volunteers (40 ankles), aged 22–50, with no history of ankle joint desease. 3D-FIESTA-C sequence was used in the 3.0t magnetic resonance equipment for imaging. During the scanning, each foot was at a 90-degree angle to the tibia.The tibial nerve of the ankle canal and its branches were displayed and measured at the same level through multiplanar reconstruction. Results Most of the tibial nerve bifurcation points were located in the ankle canal (57.5%), few (42.5%) were located at the proximal end of the ankle canal, and none was found away from the distal end. The bifurcation between the medial plantar nerve and the lateral plantar nerve is on the line between the tip of the medial malleolus and the calcaneus, and it’s angle is between 6° and 35°.The average cross-sectional diameter of the medial plantar nerve is about mm, and the lateral plantar nerve about mm. In MPR images, the display rates of both the medial calcaneal nerve and the subcalcaneal nerve were 100%, and the starting point of the subcalcaneal nerve was always at the distal end of the starting point of the medial calcaneal nerve. In 55% of cases, there were more than 2 medial calcaneal nerve innervations. Conclusion The 3D-FIESTA-C MPR can display the morphological features and positions of tibial nerve and its branches and the bifurcation point’s projection position on the body surface can be marked. This method not only benefited the imaging diagnosis of tibial nerve and branch-related lesions of the ankle canal, but also provided a good imaging basis to plan the clinical operation of the ankle canal and avoid surgical injury.


Author(s):  
Andrej Ring

Abstract Background We present an unusual technique for reconstruction of a postoperative tissue defect following hallux rigidus surgery. Methods A complicated course after left big toe arthrodesis resulted in a soft tissue defect with bone exposure of the first ray. Amputation of the big toe was categorically rejected by the patient. There was advanced arteriosclerosis with single-vessel supply to the foot via the posterior tibial artery. Outcome To preserve the big toe, the defect was covered by a fasciocutaneous radial free flap with a 15 cm long vascular pedicle which was microanastomosed to the posterior tibial artery and its accompanying vein at the level of the medial malleolus. Conclusion In certain extreme situations, the free “Chinese” radial flap can be quite effective in covering forefoot defects and allowing satisfactory and aesthetically pleasing soft tissue reconstruction.


2021 ◽  
Author(s):  
Yan Zhang ◽  
Xucheng He ◽  
Juan Li ◽  
Ju Ye ◽  
Wenjuan Han ◽  
...  

Abstract Background: The visualization of the tibial nerve and its branches in the ankle canal is helpful for the diagnosis of local lesions and compression, and it is also useful for clinical observation and surgical planning.The aim of this study was to investigate the feasibility of three-dimensional dual-excitation balanced steady-state free precession sequence (3D-FIESTA-C) multiplanar reformation (MPR) display of the tibial nerve and its branches in the ankle canal.Methods:The subjects were 20 healthy volunteers (40 ankles), aged 22-50 years, with no history of ankle joint desease. The 3D-FIESTA-C sequence was used in the 3.0T magnetic resonance equipment for imaging. Duringscanning, each foot was at an angle of 90 degrees to the tibia.The tibial nerve of the ankle canal and its branches were displayed and measured at the same level throughMPR.Results: Most of the tibial nerve bifurcation points were located in the ankle canal (57.5%), few bifurcation points (42.5%) were located at the proximal end of the ankle canal, and none of them were found away from the distal end. The bifurcation between the medial plantar nerve and the lateral plantar nerve was on the line between the tip of the medial malleolus and the calcaneus, and it’s angle ranged between 6° and 35°. In MPR images, the display rates of both the medial calcaneal nerve and the subcalcaneal nerve were 100%, and the starting point of the subcalcaneal nerve was always at the distal end of the starting point of the medial calcaneal nerve. In 55% of cases, there were more than two medial calcaneal nerve innervations.Conclusion: The 3D-FIESTA-C MPR can display the morphological features and positions of the tibial nerve and its branches and the bifurcation point’s projection position can be marked on the body surface. This method not only benefited the imaging diagnosis of the tibial nerve and branch-related lesions in the ankle canal, but it also provided a good imaging basis to plan a clinical operation of the ankle canal and avoid surgical injury.


2020 ◽  
Author(s):  
Yan Zhang ◽  
Xucheng He ◽  
Juan Li ◽  
Ju Ye ◽  
Wenjuan Han ◽  
...  

Abstract Background: The display of tibial nerve and its branches in the ankle canal is helpful for the diagnosis of local lesions and compression, and also for clinical observation and surgical planning. The aim of this study was to investigate the feasibility of three-dimensional dual-excitation balanced steady-state free precession sequence (3D-FIESTA-C) multiplanar reformation (MPR) display of tibial nerve and its branches of the ankle canal.Methods: The subjects were 20 healthy volunteers (40 ankles), aged 22-50, with no history of ankle joint disease. 3D-FIESTA-C sequence was used in the 3.0t magnetic resonance equipment for imaging. During the scanning, each foot was at a 90-degree angle to the tibia. The tibial nerve of the ankle canal and its branches were displayed and measured at the same level through multiplanar reformation.Results: Most of the tibial nerve bifurcation points were located in the ankle canal (57.5%), few (42.5%) were located at the proximal end of the ankle canal, and none was found away from the distal end. The bifurcation between the medial plantar nerve and the lateral plantar nerve is on the line between the tip of the medial malleolus and the calcaneus, and it’s angle is between 6° and 35°. In MPR images, the display rates of both the medial calcaneal nerve and the subcal caneal nerve were 100%, and the starting point of the subcal caneal nerve was always at the distal end of the starting point of the medial calcaneal nerve. In 55% of cases, there were more than 2 medial calcaneal nerve innervations.Conclusion: The 3D-FIESTA-C MPR can display the morphological features and positions of tibial nerve and its branches and the bifurcation point’s projection position on the body surface can be marked. This method not only benefited the imaging diagnosis of tibial nerve and branch-related lesions of the ankle canal, but also provided a good imaging basis to plan the clinical operation of the ankle canal and avoid surgical injury.


2020 ◽  
Author(s):  
Yan Zhang ◽  
Xucheng He ◽  
Juan Li ◽  
Ju Ye ◽  
Wenjuan Han ◽  
...  

Abstract Background: The display of tibial nerve and its branches in the ankle canal is helpful for the diagnosis of local lesions and compression, and also for clinical observation and surgical planning.The aim of this study was to investigate the feasibility of three-dimensional dual-excitation balanced steady-state free precession sequence (3D-FIESTA-C) multiplanar reconstruction (MPR) display of tibial nerve and its branches of the ankle canal.The subjects were 20 healthy volunteers (40 ankles), aged 22-50, with no history of ankle joint desease. 3D-FIESTA-Csequence was used in the 3.0t magnetic resonance equipment for imaging. During the scanning, each foot was at a 90-degree angle to the tibia so that the results of measurement are more accurate .The tibial nerve of the ankle canal and its branches were displayed and measured at the same level through multiplanar reconstruction.Results: Most of the tibial nerve bifurcation points were located in the ankle canal (57.5%), few (42.5%) were located at the proximal end of the ankle canal, and none was found away from the distal end. The bifurcation between the medial plantar nerve and the lateral plantar nerve is on the line between the tip of the medial malleolus and the calcaneus, and it’s angle is between 6° and 35°.The average cross-sectional diameter of the medial plantar nerve is about mm, and the lateral plantar nerve about mm. In MPR images, the display rates of both the medial calcaneal nerve and the subcalcaneal nerve were 100%, and the starting point of the subcalcaneal nerve was always at the distal end of the starting point of the medial calcaneal nerve. In 55% of cases, there were more than 2 medial calcaneal nerve innervations.Conclusion: The 3D-FIESTA-C MPR can display the morphological features and positions of tibial nerve and its branches. By measuring the distance between each bifurcation point, the tip of the medial malleolus and the angle between this line and the horizontal line that passes the tip of the medial malleolus, the bifurcation point’s projection position on the body surface can be accurately marked. This method not only benefited the imaging diagnosis of tibial nerve and branch-related lesions of the ankle canal, but also provided a good imaging basis to plan the clinical operation of the ankle canal and avoid surgical injury.


2016 ◽  
Vol 18 (1) ◽  
pp. 64 ◽  
Author(s):  
Miao Zheng ◽  
Chuang Chen ◽  
Qianyi Qiu ◽  
Changjun Wu

Aims: Knowledge about branching pattern of the popliteal artery is very important in any clinical settings involving the anterior and posterior tibial arteries. This study aims to elucidate the anatomical variation patterns and common types of anterior tibial artery (ATA) and posterior tibial arteries (PTA) in the general population in China. Material and methods: Anatomical variations of ATA, PTA, and peroneal artery were evaluated with ultrasound in a total of 942 lower extremity arteries in 471 patients. Results: Three patterns of course in the PTA were ultrasonographically identified:  1) PTA1: normal anatomy with posterior tibial artery entering tarsal tunnel to perfuse the foot (91.5%),  2) PTA2: tibial artery agenetic, and replaced by communicating branches of peroneal artery entering tarsal tunnel above the medial malleolus to perfuse the foot (5.9%), and 3) PTA3: hypoplastic or aplastic posterior tibial artery communicating above the medial malleolus with thick branches of peroneal artery to form a common trunk entering into the tarsal tunnel (2.4%). In cases where ATA  was hypoplastic or aplastic, thick branches of the peroneal artery replaced the anterior tibial artery to give rise to dorsalis pedis artery, with a total incidence of 3.2 % in patients, and were observed more commonly in females than in males. Hypoplastic or aplastic termini of ATA and PTA, with perfusion of the foot solely by the peroneal artery, was identified in 1 case. In another case, both communicating branches of the peroneal artery and PTA entered the tarsal tunnel to form lateral and medial plantar arteries.Conclusions: Anatomical variation of ATA and PTA is relatively common in the normal population. Caution should be exercised with these variations when preparing a peroneal artery vascular pedicle flap grafting. Ultrasound evaluation provides accurate and reliable information on the variations.


2016 ◽  
Vol 37 (12) ◽  
pp. 1350-1356 ◽  
Author(s):  
Jeremy M. LaMothe ◽  
Josh R. Baxter ◽  
Conor Murphy ◽  
Susannah Gilbert ◽  
Bridget DeSandis ◽  
...  

Background: Suture-button constructs are an alternative to screw fixation for syndesmotic injuries, and proponents advocate that suture-button constructs may allow physiological motion of the syndesmosis. Recent biomechanical data suggest that fibular instability with syndesmotic injuries is greatest in the sagittal plane, but the design of a suture-button construct, being a rope and 2 retention washers, is most effective along the axis of the rope (in the coronal plane). Some studies report that suture-button constructs are able to constrain fibular motion in the coronal plane, but the ability of a tightrope to constrain sagittal fibular motion is unknown. The purpose of this study was to assess fibular motion in response to an external rotation stress test in a syndesmotic injury model after fixation with a screw or suture-button constructs. Methods: Eleven fresh-frozen cadaver whole legs with intact tibia-fibula articulations were secured to a custom fixture. Fibular motion (coronal, sagittal, and rotational planes) in response to a 6.5-Nm external rotation moment applied to the foot was recorded with fluoroscopy and a high-resolution motion capture system. Measures were taken for the following syndesmotic conditions: intact, complete lateral injury, complete lateral and deltoid injury, repair with a tetracortical 4.0-mm screw, and repair with a suture button construct (Tightrope; Arthrex, Naples, FL) aimed from the lateral fibula to the anterior medial malleolus. Results: The suture-button construct allowed significantly more sagittal plane motion than the syndesmotic screw. Measurements acquired with mortise imaging did not detect differences between the intact, lateral injury, and 2 repair conditions. External rotation of the fibula was significantly increased in both injury conditions and was not restored to intact levels with the screw or the suture-button construct. Conclusion: A single suture-button placed from the lateral fibula to the anterior medial malleolus was unable to replicate the motion observed in the intact specimen when subjected to an external rotation stress test and allowed significantly more posterior motion of the fibula than when fixed with a screw in simulated highly unstable injuries. Clinical Relevance: Fixation of a syndesmotic injury with a single suture-button construct did not restore physiological fibular motion, which may have implications for postoperative care and clinical outcomes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Zhang ◽  
Xucheng He ◽  
Juan Li ◽  
Ju Ye ◽  
Wenjuan Han ◽  
...  

Abstract Background The visualization of the tibial nerve and its branches in the ankle canal is helpful for the diagnosis of local lesions and compression, and it is also useful for clinical observation and surgical planning. The aim of this study was to investigate the feasibility of three-dimensional dual-excitation balanced steady-state free precession sequence (3D-FIESTA-C) multiplanar reformation (MPR) display of the tibial nerve and its branches in the ankle canal. Methods The subjects were 20 healthy volunteers (40 ankles), aged 22–50 years, with no history of ankle joint disease. The 3D-FIESTA-C sequence was used in the 3.0 T magnetic resonance equipment for imaging. During scanning, each foot was at an angle of 90° to the tibia. The tibial nerve of the ankle canal and its branches were displayed and measured at the same level through MPR. Results Most of the tibial nerve bifurcation points were located in the ankle canal (57.5%), few bifurcation points (42.5%) were located at the proximal end of the ankle canal, and none of them were found away from the distal end. The bifurcation between the medial plantar nerve and the lateral plantar nerve was on the line between the tip of the medial malleolus and the calcaneus, and it’s angle ranged between 6° and 35°. In MPR images, the display rates of both the medial calcaneal nerve and the subcalcaneal nerve were 100%, and the starting point of the subcalcaneal nerve was always at the distal end of the starting point of the medial calcaneal nerve. In 55% of cases, there were more than two medial calcaneal nerve innervations. Conclusion The 3D-FIESTA-C MPR can display the morphological features and positions of the tibial nerve and its branches and the bifurcation point’s projection position can be marked on the body surface. This method not only benefited the imaging diagnosis of the tibial nerve and branch-related lesions in the ankle canal, but it also provided a good imaging basis to plan a clinical operation of the ankle canal and avoid surgical injury.


Sign in / Sign up

Export Citation Format

Share Document