scholarly journals Mechanism of Spectral Distortion for Real-Time Crack Propagation on Aluminum Alloy Structure

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Bo Jin ◽  
Cunbo Lu ◽  
Feng Zhang ◽  
Weifang Zhang

This study investigates four characteristic damage mechanisms of fiber Bragg grating (FBG) sensors, with fatigue crack propagation in aluminum alloy. The multipeak wavelength distinguish algorithm was developed for FBG spectrum quantitative analysis. The results distinguish a subordinate peak skewing significantly, associated with strain patterns along the FBG, corresponding to various crack lengths. For parallel bonded direction grating, the subordinate peak skewing appears at the strain pattern transition region. This is located at the ratio 32%-34% of crack length lying in the crack tip. Meanwhile, the four damage characteristics correspond to subordinate peak skewing. When the strain is distributed along the grating, spectral distortion occurs. In this region, the cubic strain pattern determines the shorter wavelength location of subordinate peaks. This corresponds to the 15%-17% ratio of crack length lying in the grating, causing spectral oscillations.

2008 ◽  
Vol 2008.5 (0) ◽  
pp. 331-332
Author(s):  
Takao Okada ◽  
Kazuya Kuwayama ◽  
Toshiya Nakamura ◽  
Motoo Asakawa ◽  
Shigeru Machida

2019 ◽  
pp. 147592171986572
Author(s):  
Chang Qi ◽  
Yang Weixi ◽  
Liu Jun ◽  
Gao Heming ◽  
Meng Yao

Fatigue crack propagation is one of the main problems in structural health monitoring. For the safety and operability of the metal structure, it is necessary to monitor the fatigue crack growth process of the structure in real time. In order to more accurately monitor the expansion of fatigue cracks, two kinds of sensors are used in this article: strain gauges and piezoelectric transducers. A model-based inverse finite element model algorithm is proposed to perform pattern recognition of fatigue crack length, and the fatigue crack monitoring experiment is carried out to verify the algorithm. The strain spectra of the specimen under cyclic load in the simulation and experimental crack propagation are obtained, respectively. The active lamb wave technique is also used to monitor the crack propagation. The relationship between the crack length and the lamb wave characteristic parameter is established. In order to improve the recognition accuracy of the crack propagation mode, the random forest and inverse finite element model algorithms are used to identify the crack length, and the Dempster–Shafer evidence theory is used as data fusion to integrate the conclusion of the two algorithms to make a more accountable and correct judge of the crack length. An experiment has been conducted to demonstrate the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document