scholarly journals The Cauchy problem and decay rates for strong solutions of a Boussinesq system

2005 ◽  
Vol 2005 (7) ◽  
pp. 757-766 ◽  
Author(s):  
Francisco Guillén González ◽  
Márcio Santos da Rocha ◽  
Marko Rojas Medar

The Boussinesq equations describe the motion of an incompressible viscous fluid subject to convective heat transfer. Decay rates of derivatives of solutions of the three-dimension-al Cauchy problem for a Boussinesq system are studied in this work.

Author(s):  
Yong Zhou ◽  
Jishan Fan

We study the Cauchy problem of certain Boussinesq-α equations in n dimensions with n = 2 or 3. We establish regularity for the solution under ▽u ∈ L1 (0, T; Ḃ0∞,∞(ℝn)). As a corollary, the smooth solution of the Leray-α–Boussinesq system exists globally, when n = 2. For the Lagrangian averaged Boussinesq equations, a regularity criterion ▽θ ∈ L1(0, T;L∞(ℝ2)) is established. Other Boussinesq systems with partial viscosity are also discussed in the paper.


2021 ◽  
Vol 6 (11) ◽  
pp. 12660-12679
Author(s):  
Xiufang Zhao ◽  
◽  
Ning Duan ◽  

<abstract><p>In this paper, the small initial data global well-posedness and time decay estimates of strong solutions to the Cauchy problem of 3D incompressible liquid crystal system with general Leslie stress tensor are studied. First, assuming that $ \|u_0\|_{\dot{H}^{\frac12+\varepsilon}}+\|d_0-d_*\|_{\dot{H}^{\frac32+\varepsilon}} $ ($ \varepsilon &gt; 0) $ is sufficiently small, we obtain the global well-posedness of strong solutions. Moreover, the $ L^p $–$ L^2 $ ($ \frac32\leq p\leq2 $) type optimal decay rates of the higher-order spatial derivatives of solutions are also obtained. The $ \dot{H}^{-s} $ ($ 0\leq s &lt; \frac12 $) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.</p></abstract>


Author(s):  
Tatiana F. Dolgikh

One of the mathematical models describing the behavior of two horizontally infinite adjoining layers of an ideal incompressible liquid under a solid cover moving at different speeds is investigated. At a large difference in the layer velocities, the Kelvin-Helmholtz instability occurs, which leads to a distortion of the interface. At the initial point in time, the interface is not necessarily flat. From a mathematical point of view, the behavior of the liquid layers is described by a system of four quasilinear equations, either hyperbolic or elliptic, in partial derivatives of the first order. Some type shallow water equations are used to construct the model. In the simple version of the model considered in this paper, in the spatially one-dimensional case, the unknowns are the boundary between the liquid layers h(x,t) and the difference in their velocities γ(x,t). The main attention is paid to the case of elliptic equations when |h|&lt;1 and γ&gt;1. An evolutionary Cauchy problem with arbitrary sufficiently smooth initial data is set for the system of equations. The explicit dependence of the Riemann invariants on the initial variables of the problem is indicated. To solve the Cauchy problem formulated in terms of Riemann invariants, a variant of the hodograph method based on a certain conservation law is used. This method allows us to convert a system of two quasilinear partial differential equations of the first order to a single linear partial differential equation of the second order with variable coefficients. For a linear equation, the Riemann-Green function is specified, which is used to construct a two-parameter implicit solution to the original problem. The explicit solution of the problem is constructed on the level lines (isochrons) of the implicit solution by solving a certain Cauchy problem for a system of ordinary differential equations. As a result, the original Cauchy problem in partial derivatives of the first order is transformed to the Cauchy problem for a system of ordinary differential equations, which is solved by numerical methods. Due to the bulkiness of the expression for the Riemann-Green function, some asymptotic approximation of the problem is considered, and the results of calculations, and their analysis are presented.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Filomat ◽  
2013 ◽  
Vol 27 (7) ◽  
pp. 1247-1257 ◽  
Author(s):  
Shijin Ding ◽  
Jinrui Huang ◽  
Fengguang Xia

We consider the Cauchy problem for incompressible hydrodynamic flow of nematic liquid crystals in three dimensions. We prove the global existence and uniqueness of the strong solutions with nonnegative p0 and small initial data.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yongsheng Mi ◽  
Chunlai Mu ◽  
Weian Tao

We study the Cauchy problem of a weakly dissipative modified two-component periodic Camassa-Holm equation. We first establish the local well-posedness result. Then we derive the precise blow-up scenario and the blow-up rate for strong solutions to the system. Finally, we present two blow-up results for strong solutions to the system.


Sign in / Sign up

Export Citation Format

Share Document