riemann invariants
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
Satadal Datta ◽  
Uwe R Fischer

Abstract The dynamics of sound in a fluid is intrinsically nonlinear. We derive the consequences of this fact for the analogue gravitational field experienced by sound waves, by first describing generally how the nonlinearity of the equation for phase fluctuations back-reacts on the definition of the background providing the effective space-time metric. Subsequently, we use the analytical tool of Riemann invariants in one-dimensional motion to derive source terms of the effective gravitational field stemming from nonlinearity. Finally, we show that the consequences of nonlinearity we derive can be observed with Bose-Einstein condensates in the ultracold gas laboratory.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Valeriy Nikonov

One of the most important and complex effects in compressible fluid flow simulation is a shock-capturing mechanism. Numerous high-resolution Euler-type methods have been proposed to resolve smooth flow scales accurately and to capture the discontinuities simultaneously. One of the disadvantages of these methods is a numerical viscosity for shocks. In the shock, the flow parameters change abruptly at a distance equal to the mean free path of a gas molecule, which is much smaller than the cell size of the computational grid. Due to the numerical viscosity, the aforementioned Euler-type methods stretch the parameter change in the shock over few grid cells. We introduce a semi-Lagrangian Godunov-type method without numerical viscosity for shocks. Another well-known approach is a method of characteristics that has no numerical viscosity and uses the Riemann invariants or solvers for water hammer phenomenon modeling, but in its formulation the convective terms are typically neglected. We use a similar approach to solve the one-dimensional adiabatic gas dynamics equations, but we split the equations into parts describing convection and acoustic processes separately, with corresponding different time steps. When we are looking for the solution to the one-dimensional problem of the scalar hyperbolic conservation law by the proposed method, we additionally use the iterative Godunov exact solver, because the Riemann invariants are non-conserved for moderate and strong shocks in an ideal gas. The proposed method belongs to a group of particle-in-cell (PIC) methods; to the best of the author’s knowledge, there are no similar PIC numerical schemes using the Riemann invariants or the iterative Godunov exact solver. This article describes the application of the aforementioned method for the inviscid Burgers’ equation, adiabatic gas dynamics equations, and the one-dimensional scalar hyperbolic conservation law. The numerical analysis results for several test cases (e.g., the standard shock-tube problem of Sod, the Riemann problem of Lax, the double expansion wave problem, the Shu–Osher shock-tube problem) are compared with the exact solution and Harten’s data. In the shock for the proposed method, the flow properties change instantaneously (with an accuracy dependent on the grid cell size). The iterative Godunov exact solver determines the accuracy of the proposed method for flow discontinuities. In calculations, we use the iteration termination condition less than 10−5 to find the pressure difference between the current and previous iterations.


Author(s):  
Tatiana F. Dolgikh

One of the mathematical models describing the behavior of two horizontally infinite adjoining layers of an ideal incompressible liquid under a solid cover moving at different speeds is investigated. At a large difference in the layer velocities, the Kelvin-Helmholtz instability occurs, which leads to a distortion of the interface. At the initial point in time, the interface is not necessarily flat. From a mathematical point of view, the behavior of the liquid layers is described by a system of four quasilinear equations, either hyperbolic or elliptic, in partial derivatives of the first order. Some type shallow water equations are used to construct the model. In the simple version of the model considered in this paper, in the spatially one-dimensional case, the unknowns are the boundary between the liquid layers h(x,t) and the difference in their velocities γ(x,t). The main attention is paid to the case of elliptic equations when |h|<1 and γ>1. An evolutionary Cauchy problem with arbitrary sufficiently smooth initial data is set for the system of equations. The explicit dependence of the Riemann invariants on the initial variables of the problem is indicated. To solve the Cauchy problem formulated in terms of Riemann invariants, a variant of the hodograph method based on a certain conservation law is used. This method allows us to convert a system of two quasilinear partial differential equations of the first order to a single linear partial differential equation of the second order with variable coefficients. For a linear equation, the Riemann-Green function is specified, which is used to construct a two-parameter implicit solution to the original problem. The explicit solution of the problem is constructed on the level lines (isochrons) of the implicit solution by solving a certain Cauchy problem for a system of ordinary differential equations. As a result, the original Cauchy problem in partial derivatives of the first order is transformed to the Cauchy problem for a system of ordinary differential equations, which is solved by numerical methods. Due to the bulkiness of the expression for the Riemann-Green function, some asymptotic approximation of the problem is considered, and the results of calculations, and their analysis are presented.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jacek Banasiak ◽  
Adam Błoch

<p style='text-indent:20px;'>The paper is concerned with a system of linear hyperbolic differential equations on a network coupled through general transmission conditions of Kirchhoff's-type at the nodes. We discuss the reduction of such a problem to a system of 1-dimensional hyperbolic problems for the associated Riemann invariants and provide a semigroup-theoretic proof of its well-posedness. A number of examples showing the relation of our results with recent research is also provided.</p>


Author(s):  
Guillaume Jean Jacques Fournier ◽  
Matthias Haeringer ◽  
Camilo Silva ◽  
Wolfgang Polifke

Abstract The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling between flow, flame and acoustics that does not involve the natural acoustic modes of the system. One recent study showed that ITA modes in annular combustors come in significant number and with the peculiar behavior of clusters, i.e. several modes with close frequencies. In the present work an analytical model of a typical annular combustor is derived via Riemann invariants and Bloch theory. The resulting formulation describes the full annular system as a longitudinal combustor with an outlet reflection coefficient that depends on frequency and the azimuthal mode order. The model explains the underlying mechanism of the clustering phenomena and the structure of the clusters associated with ITA modes of different azimuthal orders. In addition, a phasor analysis is proposed, which enclose the conditions for which the 1D model remains valid when describing the thermoacoustic behavior of an annular combustor.


Author(s):  
Guillaume J. J. Fournier ◽  
Matthias Haeringer ◽  
Camilo F. Silva ◽  
Wolfgang Polifke

Abstract The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling between flow, flame and acoustics that does not involve the natural acoustic modes of the system. One recent study showed that ITA modes in annular combustors come in significant number and with the peculiar behavior of clusters, i.e. several modes with close frequencies. In the present work an analytical model of a typical annular combustor is derived via Riemann invariants and Bloch theory. The resulting formulation describes the full annular system as a longitudinal combustor with an outlet reflection coefficient that depends on frequency and the azimuthal mode order. The model explains the underlying mechanism of the clustering phenomena and the structure of the clusters associated with ITA modes of different azimuthal orders. In addition, a phasor analysis is proposed, which enclose the conditions for which the 1D model remains valid when describing the thermoacoustic behavior of an annular combustor.


Sign in / Sign up

Export Citation Format

Share Document