scholarly journals On a problem on explicit embeddings of the groupℚ

2005 ◽  
Vol 2005 (13) ◽  
pp. 2119-2123 ◽  
Author(s):  
Vahagn H. Mikaelian

Answering a question of de la Harpe and Bridson in the Kourovka Notebook, we build the explicit embeddings of the additive group of rational numbersℚin a finitely generated groupG. The groupGin fact is two-generator, and the constructed embedding can be subnormal and preserve a few properties such as solubility or torsion freeness.

2008 ◽  
Vol 144 (5) ◽  
pp. 1176-1198 ◽  
Author(s):  
Burt Totaro

AbstractWe give the first examples over finite fields of rings of invariants that are not finitely generated. (The examples work over arbitrary fields, for example the rational numbers.) The group involved can be as small as three copies of the additive group. The failure of finite generation comes from certain elliptic fibrations or abelian surface fibrations having positive Mordell–Weil rank. Our work suggests a generalization of the Morrison–Kawamata cone conjecture on Calabi–Yau fiber spaces to klt Calabi–Yau pairs. We prove the conjecture in dimension two under the assumption that the anticanonical bundle is semi-ample.


2018 ◽  
Vol 52 (2 (246)) ◽  
pp. 88-92
Author(s):  
N.E. Mirzakhanyan ◽  
H.V. Piliposyan

In the paper an answer to a problem posed by A.I. Sozutov in the Kourovka Notebook is given. The solution is based on some modification of the method that was proposed for constructing a non-abelian analogue of the additive group of rational numbers, i.e. a group whose center is an infinite cyclic group and any two non-trivial subgroups of which have a non-trivial intersection.


2017 ◽  
Vol 20 (2) ◽  
Author(s):  
Jack O. Button

AbstractWe show, using acylindrical hyperbolicity, that a finitely generated group splitting over


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


1971 ◽  
Vol 5 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Gilbert Baumslag

We exhibit a 3-generator metabelian group which is not finitely related but has a trivial multiplicator.1. The purpose of this note is to establish the exitense of a finitely generated group which is not finitely related, but whose multiplecator is finitely generated. This settles negatively a question whichb has been open for a few years (it was first brought to my attention by Michel Kervaire and Joan Landman Dyer in 1964, but I believe it is somewhat older). The group is given in the follwing theorem.


Author(s):  
Jérémie Brieussel ◽  
Thibault Godin ◽  
Bijan Mohammadi

The growth of a finitely generated group is an important geometric invariant which has been studied for decades. It can be either polynomial, for a well-understood class of groups, or exponential, for most groups studied by geometers, or intermediate, that is between polynomial and exponential. Despite recent spectacular progresses, the class of groups with intermediate growth remains largely mysterious. Many examples of such groups are constructed using Mealy automata. The aim of this paper is to give an algorithmic procedure to study the growth of such automaton groups, and more precisely to provide numerical upper bounds on their exponents. Our functions retrieve known optimal bounds on the famous first Grigorchuk group. They also improve known upper bounds on other automaton groups and permitted us to discover several new examples of automaton groups of intermediate growth. All the algorithms described are implemented in GAP, a language dedicated to computational group theory.


2009 ◽  
Vol 30 (6) ◽  
pp. 1803-1816 ◽  
Author(s):  
C. R. E. RAJA

AbstractLet K be a compact metrizable group and Γ be a finitely generated group of commuting automorphisms of K. We show that ergodicity of Γ implies Γ contains ergodic automorphisms if center of the action, Z(Γ)={α∈Aut(K)∣α commutes with elements of Γ} has descending chain condition. To explain that the condition on the center of the action is not restrictive, we discuss certain abelian groups which, in particular, provide new proofs to the theorems of Berend [Ergodic semigroups of epimorphisms. Trans. Amer. Math. Soc.289(1) (1985), 393–407] and Schmidt [Automorphisms of compact abelian groups and affine varieties. Proc. London Math. Soc. (3) 61 (1990), 480–496].


1985 ◽  
Vol 50 (3) ◽  
pp. 743-772 ◽  
Author(s):  
Fritz Grunewald ◽  
Daniel Segal

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.


2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Khadijeh Alibabaei

AbstractWe show that the wreath product of a finitely generated abelian group with a polycyclic group is a LERF group. This theorem yields as a corollary that finitely generated free metabelian groups are LERF, a result due to Coulbois. We also show that a free solvable group of class 3 and rank at least 2 does not contain a strictly ascending HNN-extension of a finitely generated group. Since such groups are known not to be LERF, this settles, in the negative, a question of J. O. Button.


Sign in / Sign up

Export Citation Format

Share Document