scholarly journals Enhanced Behavioral Recovery from Sensorimotor Cortex Lesions After Pyramidotomy in Adult Rats

2000 ◽  
Vol 7 (4) ◽  
pp. 261-277 ◽  
Author(s):  
V. V. Fanardjian ◽  
O. V. Gevorkyan ◽  
R. K. Mallina ◽  
A. B. Melik-Moussian ◽  
I. B. Meliksetyan

Unilateral transection of the bulbar pyramid, performed before the ablation of the ipsilateral sensorimotor cortex, has been shown to facilitate the recovery of operantly conditioned reflexes and compensatory processes in rats. Such enhanced behaviorai recovery was absent when only the sensorimotor cortex was ablated. This phenomenon is explained by the switching of motor activity under the control of the cortico-rubrospinal system. Switching of the descending influences is accomplished through the following loop: cortico-rubrai projectionred nucleus-inferior olive-cerebellum-thalamuscerebral cortex. This suggests that a preliminary lesion of the peripheral part of the system, represented by a descending spinal projection, facilitates the recovery processes to develop during the subsequent destruction of its central part.

2008 ◽  
Vol 60 (4) ◽  
pp. 581-591
Author(s):  
Sanja Dacic ◽  
Sanja Pekovic ◽  
Maja Stojiljkovic ◽  
Irena Lavrnja ◽  
Danijela Stojkov ◽  
...  

The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs). In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.


2012 ◽  
Vol 33 (2) ◽  
pp. 300-310 ◽  
Author(s):  
Yu Luo ◽  
Hui Shen ◽  
Hua-Shan Liu ◽  
Seong-Jin Yu ◽  
David J Reiner ◽  
...  

Utilizing a classic stroke model in rodents, middle cerebral artery occlusion (MCAo), we describe a novel neuroregenerative approach using the repeated intranasal administration of cocaine- and amphetamine-regulated transcript (CART) peptide starting from day 3 poststroke for enhancing the functional recovery of injured brain. Adult rats were separated into two groups with similar infarction sizes, measured by magnetic resonance imaging on day 2 after MCAo, and were treated with CART or vehicle. The CART treatment increased CART level in the brain, improved behavioral recovery, and reduced neurological scores. In the subventricular zone (SVZ), CART enhanced immunolabeling of bromodeoxyuridine, a neural progenitor cell marker Musashi-1, and the proliferating cell nuclear antigen, as well as upregulated brain-derived neurotrophic factor (BDNF) mRNA. AAV–GFP was locally applied to the SVZ to examine migration of SVZ cells. The CART enhanced migration of GFP(+) cells from SVZ toward the ischemic cortex. In SVZ culture, CART increased the size of neurospheres. The CART-mediated cell migration from SVZ explants was reduced by anti-BDNF blocking antibody. Using 1H-MRS (proton magnetic resonance spectroscopy), increases in N-acetylaspartate levels were found in the lesioned cortex after CART treatment in stroke brain. Cocaine- and amphetamine-regulated transcript increased the expression of GAP43 and fluoro-ruby fluorescence in the lesioned cortex. In conclusion, our data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain.


Sign in / Sign up

Export Citation Format

Share Document