scholarly journals Isomorphism of generalized triangular matrix-rings and recovery of tiles

2003 ◽  
Vol 2003 (9) ◽  
pp. 533-538 ◽  
Author(s):  
R. Khazal ◽  
S. Dăscălescu ◽  
L. Van Wyk

We prove an isomorphism theorem for generalized triangular matrix-rings, over rings having only the idempotents0and1, in particular, over indecomposable commutative rings or over local rings (not necessarily commutative). As a consequence, we obtain a recovery result for the tile in a tiled matrix-ring.

2012 ◽  
Vol 11 (06) ◽  
pp. 1250107 ◽  
Author(s):  
A. HAGHANY ◽  
M. MAZROOEI ◽  
M. R. VEDADI

Over a formal triangular matrix ring we study pure injective, pure projective and locally coherent modules. Some applications are then given, in particular the (J-)coherence of the ring [Formula: see text] is characterized whenever BM is flat.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050053
Author(s):  
J. Sedighi Hafshejani ◽  
A. R. Naghipour ◽  
M. R. Rismanchian

In this paper, we state a generalization of the ring of integer-valued polynomials over upper triangular matrix rings. The set of integer-valued polynomials over some block matrix rings is studied. In fact, we consider the set of integer-valued polynomials [Formula: see text] for each [Formula: see text], where [Formula: see text] is an integral domain with quotient field [Formula: see text] and [Formula: see text] is a block matrix ring between upper triangular matrix ring [Formula: see text] and full matrix ring [Formula: see text]. In fact, we have [Formula: see text]. It is known that the sets of integer-valued polynomials [Formula: see text] and [Formula: see text] are rings. We state some relations between the rings [Formula: see text] and the partitions of [Formula: see text]. Then, we show that the set [Formula: see text] is a ring for each [Formula: see text]. Further, it is proved that if the ring [Formula: see text] is not Noetherian then the ring [Formula: see text] is not Noetherian, too. Finally, some properties and relations are stated between the rings [Formula: see text], [Formula: see text] and [Formula: see text].


2010 ◽  
Vol 53 (4) ◽  
pp. 587-601 ◽  
Author(s):  
Gary F. Birkenmeier ◽  
Jae Keol Park ◽  
S. Tariq Rizvi

AbstractWe investigate the behavior of the quasi-Baer and the right FI-extending right ring hulls under various ring extensions including group ring extensions, full and triangular matrix ring extensions, and infinite matrix ring extensions. As a consequence, we show that for semiprime rings R and S, if R and S are Morita equivalent, then so are the quasi-Baer right ring hulls of R and S, respectively. As an application, we prove that if unital C*-algebras A and B are Morita equivalent as rings, then the bounded central closure of A and that of B are strongly Morita equivalent as C*-algebras. Our results show that the quasi-Baer property is always preserved by infinite matrix rings, unlike the Baer property. Moreover, we give an affirmative answer to an open question of Goel and Jain for the commutative group ring A[G] of a torsion-free Abelian group G over a commutative semiprime quasi-continuous ring A. Examples that illustrate and delimit the results of this paper are provided.


Author(s):  
Lixin Mao

Let [Formula: see text] be a formal triangular matrix ring, where [Formula: see text] and [Formula: see text] are rings and [Formula: see text] is a [Formula: see text]-bimodule. We give some computing formulas of homological dimensions of special [Formula: see text]-modules. As an application, we describe the structures of [Formula: see text]-tilting left [Formula: see text]-modules.


2016 ◽  
Vol 15 (07) ◽  
pp. 1650121 ◽  
Author(s):  
Gary F. Birkenmeier ◽  
Adnan Tercan ◽  
Canan C. Yucel

A ring [Formula: see text] is said to be right [Formula: see text]-extending if every projection invariant right ideal of [Formula: see text] is essential in a direct summand of [Formula: see text]. In this article, we investigate the transfer of the [Formula: see text]-extending condition between a ring [Formula: see text] and its various ring extensions. More specifically, we characterize the right [Formula: see text]-extending generalized triangular matrix rings; and we show that if [Formula: see text] is [Formula: see text]-extending, then so is [Formula: see text] where [Formula: see text] is an overring of [Formula: see text] which is an essential extension of [Formula: see text], an [Formula: see text] upper triangular matrix ring of [Formula: see text], a column finite or column and row finite matrix ring over [Formula: see text], or a certain type of trivial extension of [Formula: see text].


Author(s):  
Yosum Kurtulmaz

Abstract Let R be an arbitrary ring with identity. An element a ∈ R is strongly J-clean if there exist an idempotent e ∈ R and element w ∈ J(R) such that a = e + w and ew = ew. A ring R is strongly J-clean in case every element in R is strongly J-clean. In this note, we investigate the strong J-cleanness of the skew triangular matrix ring Tn(R, σ) over a local ring R, where σ is an endomorphism of R and n = 2, 3, 4.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2676
Author(s):  
Driss Bennis ◽  
Rachid El Maaouy ◽  
Juan Ramón García Rozas ◽  
Luis Oyonarte

Let A and B be rings, U a (B,A)-bimodule, and T=A0UB the triangular matrix ring. In this paper, several notions in relative Gorenstein algebra over a triangular matrix ring are investigated. We first study how to construct w-tilting (tilting, semidualizing) over T using the corresponding ones over A and B. We show that when U is relative (weakly) compatible, we are able to describe the structure of GC-projective modules over T. As an application, we study when a morphism in T-Mod is a special GCP(T)-precover and when the class GCP(T) is a special precovering class. In addition, we study the relative global dimension of T. In some cases, we show that it can be computed from the relative global dimensions of A and B. We end the paper with a counterexample to a result that characterizes when a T-module has a finite projective dimension.


Author(s):  
P. M. Cohn

1. Introduction. The Nullstellensatz in commutative algebraic geometry may be described as a means of studying certain commutative rings (viz. affine algebras) by their homomorphisms into algebraically closed fields, and a number of attempts have been made to extend the result to the non-commutative case. In particular, Amitsur and Procesi have studied the case of general rings, with homomorphisms into matrix rings over commutative fields ((1), (2)) and Procesi has obtained more precise results for homomorphisms of PI-rings (11). Since a finite-dimensional division algebra can always be embedded in a matrix ring over a field, this includes the case of skew fields that are finite-dimensional over their centre, but it tells us nothing about general skew fields.


2020 ◽  
pp. 1-8
Author(s):  
GUOLI XIA ◽  
YIQIANG ZHOU

Abstract An element a in a ring R is left annihilator-stable (or left AS) if, whenever $Ra+{\rm l}(b)=R$ with $b\in R$ , $a-u\in {\rm l}(b)$ for a unit u in R, and the ring R is a left AS ring if each of its elements is left AS. In this paper, we show that the left AS elements in a ring form a multiplicatively closed set, giving an affirmative answer to a question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.]. This result is used to obtain a necessary and sufficient condition for a formal triangular matrix ring to be left AS. As an application, we provide examples of left AS rings R over which the triangular matrix rings ${\mathbb T}_n(R)$ are not left AS for all $n\ge 2$ . These examples give a negative answer to another question of Nicholson [J. Pure Appl. Alg.221 (2017), 2557–2572.] whether R/J(R) being left AS implies that R is left AS.


2013 ◽  
Vol 12 (08) ◽  
pp. 1350058 ◽  
Author(s):  
HOGER GHAHRAMANI

Let [Formula: see text] be a ring. We say that [Formula: see text] is zero product determined if for every additive group [Formula: see text] and every bi-additive map [Formula: see text] the following holds: if ϕ(a, b) = 0 whenever ab = 0, then there exists an additive map [Formula: see text] such that ϕ(a, b) = T(ab) for all [Formula: see text]. In this paper, first we study the properties of zero product determined rings and show that semi-commutative and non-commutative rings are not zero product determined. Then, we will examine whether the rings with a nontrivial idempotent are zero product determined. As applications of the above results, we prove that simple rings with a nontrivial idempotent, full matrix rings and some classes of operator algebras are zero product determined rings and discuss whether triangular rings and upper triangular matrix rings are zero product determined.


Sign in / Sign up

Export Citation Format

Share Document