scholarly journals Peano compactifications and propertySmetric spaces

1980 ◽  
Vol 3 (4) ◽  
pp. 695-700
Author(s):  
R. F. Dickman

Let(X,d)denote a locally connected, connected separable metric space. We say theXisS-metrizable provided there is a topologically equivalent metricρonXsuch that(X,ρ)has PropertyS, i.e. for anyϵ>0,Xis the union of finitely many connected sets ofρ-diameter less thanϵ. It is well-known thatS-metrizable spaces are locally connected and that ifρis a PropertySmetric forX, then the usual metric completion(X˜,ρ˜)of(X,ρ)is a compact, locally connected, connected metric space, i.e.(X˜,ρ˜)is a Peano compactification of(X,ρ). There are easily constructed examples of locally connected connected metric spaces which fail to beS-metrizable, however the author does not know of a non-S-metrizable space(X,d)which has a Peano compactification. In this paper we conjecture that: If(P,ρ)a Peano compactification of(X,ρ|X),Xmust beS-metrizable. Several (new) necessary and sufficient for a space to beS-metrizable are given, together with an example of non-S-metrizable space which fails to have a Peano compactification.

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1891
Author(s):  
Orhan Göçür

Do the topologies of each dimension have to be same and metrizable for metricization of any space? I show that this is not necessary with monad metrizable spaces. For example, a monad metrizable space may have got any indiscrete topologies, discrete topologies, different metric spaces, or any topological spaces in each different dimension. I compute the distance in real space between such topologies. First, the passing points between different topologies is defined and then a monad metric is defined. Then I provide definitions and some properties about monad metrizable spaces and PAS metric spaces. I show that any PAS metric space is also a monad metrizable space. Moreover, some properties and some examples about them are presented.


2015 ◽  
Vol 98 (112) ◽  
pp. 179-191
Author(s):  
Van Dung

We introduce the notion of an ls-?-Ponomarev-system to give necessary and sufficient conditions for f:(M,M0) ? X to be a strong wc-mapping (wc-mapping, wk-mapping) where M is a locally separable metric space. Then, we systematically get characterizations of weakly continuous strong wc-images (wc-images, wk-images) of locally separable metric spaces by means of certain networks. Also, we give counterexamples to sharpen some results on images of locally separable metric spaces in the literature.


2021 ◽  
Vol 19 (1) ◽  
pp. 1145-1152
Author(s):  
Songlin Yang ◽  
Xun Ge

Abstract so-metrizable spaces are a class of important generalized metric spaces between metric spaces and s n sn -metrizable spaces where a space is called an so-metrizable space if it has a σ \sigma -locally finite so-network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize so-metrizable spaces by images of metric spaces. This paper gives such characterizations for so-metrizable spaces. More precisely, this paper introduces so-open mappings and uses the “Pomomarev’s method” to prove that a space X X is an so-metrizable space if and only if it is an so-open, compact-covering, σ \sigma -image of a metric space, if and only if it is an so-open, σ \sigma -image of a metric space. In addition, it is shown that so-open mapping is a simplified form of s n sn -open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of so-metrizable spaces and establish some equivalent relations among so-open mapping, s n sn -open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory.


2018 ◽  
Vol 19 (2) ◽  
pp. 253
Author(s):  
A.C. Megaritis

<p>In [1], A. A. Borubaev introduced the concept of τ-metric space, where τ is an arbitrary cardinal number. The class of τ-metric spaces as τ runs through the cardinal numbers contains all ordinary metric spaces (for τ = 1) and thus these spaces are a generalization of metric spaces. In this paper the notion of τ-metrizable space is considered.</p>


1982 ◽  
Vol 5 (3) ◽  
pp. 599-603
Author(s):  
R. F. Dickman

Let (X,d) denote a locally connected, connected separable metric space. We say the X is S-metrizable provided there is a topologically equivalent metric ρ on X such that (X,ρ) has Property S, i.e., for any ϵ>0, X is the union of finitely many connected sets of ρ-diameter less than ϵ. It is well-known that S-metrizable spaces are locally connected and that if ρ is a Property S metric for X, then the usual metric completion (X˜,ρ˜) of (X,ρ) is a compact, locally connected, connected metric space; i.e., (X˜,ρ˜) is a Peano compactification of (X,ρ). In an earlier paper, the author conjectured that if a space (X,d) has a Peano compactification, then it must be S-metrizable. In this paper, that conjecture is shown to be false; however, the connected spaces which have Peano compactificatons are shown to be exactly those having a totally bounded, almost convex metric. Several related results are given.


1969 ◽  
Vol 21 ◽  
pp. 748-750 ◽  
Author(s):  
B. R. Wenner

Although the Lebesgue dimension function is topologically invariant, the dimension-theoretic properties of a metric space can sometimes be made clearer by the introduction of a new, topologically equivalent metric. A considerable amount of effort has been devoted to the problem of constructing such metrics; one example of the fruits of this research is the following theorem by Nagata (2, Theorem 5).In order that dim R ≦ n for a metrizable space R it is necessary and sufficient to be able to define a metric p(x, y) agreeing with the topology of R such that for every ∊ > 0 and for every point x oƒ R,implyA metric ρ which satisfies the condition of this theorem is called Nagata's metric (this term was introduced, to the best of the author's knowledge, by Nagami (1, Definition 9.3)).


2017 ◽  
Vol 5 (1) ◽  
pp. 138-151 ◽  
Author(s):  
David Bryant ◽  
André Nies ◽  
Paul Tupper

AbstractThe Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space. The Urysohn space is uniquely determined up to isometry within separable metric spaces by these two properties. We introduce an analogue of the Urysohn space for diversities, a recently developed variant of the concept of a metric space. In a diversity any finite set of points is assigned a non-negative value, extending the notion of a metric which only applies to unordered pairs of points.We construct the unique separable complete diversity that it is ultrahomogeneous and universal with respect to separable diversities.


2011 ◽  
Vol 48 (2) ◽  
pp. 145-159
Author(s):  
Zhaowen Li ◽  
Xun Ge ◽  
Qingguo Li

In this paper, we prove that a space X is a weak-open compact image of a locally separable metric space if and only if X has a uniform cosmic-weak-base if and only if X is a weak-open compact image of a metric space and a locally cosmic space, and give some internal characterizations of weak-open s-images of locally separable metric spaces.


2003 ◽  
Vol 4 (2) ◽  
pp. 377 ◽  
Author(s):  
Camillo Constantini ◽  
Wieslaw Kubís

<p>We prove that the hyperspace of closed bounded sets with the Hausdor_ topology, over an almost convex metric space, is an absolute retract. Dense subspaces of normed linear spaces are examples of, not necessarily connected, almost convex metric spaces. We give some necessary conditions for the path-wise connectedness of the Hausdorff metric topology on closed bounded sets. Finally, we describe properties of a separable metric space, under which its hyperspace with the Wijsman topology is path-wise connected.</p>


2003 ◽  
Vol 74 (88) ◽  
pp. 121-128 ◽  
Author(s):  
Ying Ge

We give some characterizations of sn-metrizable spaces. We prove that a space is an sn-metrizable space if and only if it has a locally-finite point-star sn-network. As an application of the result, a space is an sn-metrizable space if and only if it is a sequentially quotient, ? (compact), ?-image of a metric space.


Sign in / Sign up

Export Citation Format

Share Document