Remetrization in Strongly Countabledimensional Spaces

1969 ◽  
Vol 21 ◽  
pp. 748-750 ◽  
Author(s):  
B. R. Wenner

Although the Lebesgue dimension function is topologically invariant, the dimension-theoretic properties of a metric space can sometimes be made clearer by the introduction of a new, topologically equivalent metric. A considerable amount of effort has been devoted to the problem of constructing such metrics; one example of the fruits of this research is the following theorem by Nagata (2, Theorem 5).In order that dim R ≦ n for a metrizable space R it is necessary and sufficient to be able to define a metric p(x, y) agreeing with the topology of R such that for every ∊ > 0 and for every point x oƒ R,implyA metric ρ which satisfies the condition of this theorem is called Nagata's metric (this term was introduced, to the best of the author's knowledge, by Nagami (1, Definition 9.3)).

1980 ◽  
Vol 3 (4) ◽  
pp. 695-700
Author(s):  
R. F. Dickman

Let(X,d)denote a locally connected, connected separable metric space. We say theXisS-metrizable provided there is a topologically equivalent metricρonXsuch that(X,ρ)has PropertyS, i.e. for anyϵ>0,Xis the union of finitely many connected sets ofρ-diameter less thanϵ. It is well-known thatS-metrizable spaces are locally connected and that ifρis a PropertySmetric forX, then the usual metric completion(X˜,ρ˜)of(X,ρ)is a compact, locally connected, connected metric space, i.e.(X˜,ρ˜)is a Peano compactification of(X,ρ). There are easily constructed examples of locally connected connected metric spaces which fail to beS-metrizable, however the author does not know of a non-S-metrizable space(X,d)which has a Peano compactification. In this paper we conjecture that: If(P,ρ)a Peano compactification of(X,ρ|X),Xmust beS-metrizable. Several (new) necessary and sufficient for a space to beS-metrizable are given, together with an example of non-S-metrizable space which fails to have a Peano compactification.


1968 ◽  
Vol 20 ◽  
pp. 795-804 ◽  
Author(s):  
Carlos J. R. Borges

Our present work is divided into three sections. In §2 we study the metrizability of spaces with a Gδ-diagonal (see Definition 2.1). In §3 we study the metrization of topological spaces by means of collections of (not necessarily continuous) real-valued functions on a topological space. Our efforts, in §§2 and 3, are directed toward answering the following question: “Is every normal, metacompact (see Definition 2.4) Moore space a metrizable space?” which still remains unsolved. (However, Theorems 2.12 through 2.15 and Theorem 3.1 may be helpful in answering the preceding question.) In §4 we prove an apparently new necessary and sufficient condition for the metrizability of the Stone-Čech compactification of a metrizable space and hence for the compactness of a metric space.


2016 ◽  
Vol 37 (7) ◽  
pp. 2163-2186 ◽  
Author(s):  
ANNA GIORDANO BRUNO ◽  
SIMONE VIRILI

Let $G$ be a topological group, let $\unicode[STIX]{x1D719}$ be a continuous endomorphism of $G$ and let $H$ be a closed $\unicode[STIX]{x1D719}$-invariant subgroup of $G$. We study whether the topological entropy is an additive invariant, that is, $$\begin{eqnarray}h_{\text{top}}(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719}\restriction _{H})+h_{\text{top}}(\bar{\unicode[STIX]{x1D719}}),\end{eqnarray}$$ where $\bar{\unicode[STIX]{x1D719}}:G/H\rightarrow G/H$ is the map induced by $\unicode[STIX]{x1D719}$. We concentrate on the case when $G$ is totally disconnected locally compact and $H$ is either compact or normal. Under these hypotheses, we show that the above additivity property holds true whenever $\unicode[STIX]{x1D719}H=H$ and $\ker (\unicode[STIX]{x1D719})\leq H$. As an application, we give a dynamical interpretation of the scale $s(\unicode[STIX]{x1D719})$ by showing that $\log s(\unicode[STIX]{x1D719})$ is the topological entropy of a suitable map induced by $\unicode[STIX]{x1D719}$. Finally, we give necessary and sufficient conditions for the equality $\log s(\unicode[STIX]{x1D719})=h_{\text{top}}(\unicode[STIX]{x1D719})$ to hold.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


Author(s):  
S. N. Afriat

Since the first introduction of the concept of a matrix, questions about functions of matrices have had the attention of many writers, starting with Cayley(i) in 1858, and Laguerre(2) in 1867. In 1883, Sylvester(3) defined a general function φ(a) of a matrix a with simple characteristic roots, by use of Lagrange's interpolation formula, and Buchheim (4), in 1886, extended his definition to the case of multiple characteristic roots. Then Weyr(5) showed in 1887 that, for a matrix a with characteristic roots lying inside the circle of convergence of a power series φ(ζ), the power series φ(a) is convergent; and in 1900 Poincaré (6) obtained the formulaefor the sum, where C is a circle lying in and concentric with the circle of convergence, and containing all the characteristic roots in its ulterior, such a formula having effectively been suggested by Frobenius(7) in 1896 for defining a general function of a matrix. Phillips (8), in 1919, discovered the analogue, for power series in matrices, of Taylor's theorem. In 1926 Hensel(9) completed the result of Weyr by showing that a necessary and sufficient condition for the convergence of φ(a) is the convergence of the derived series φ(r)(α) (0 ≼ r < mα; α) at each characteristic root α of a, of order r at most the multiplicity mα of α. In 1928 Giorgi(10) gave a definition, depending on the classical canonical decomposition of a matrix, which is equivalent to the contour integral formula, and Fantappie (11) developed the theory of this formula, and obtained the expressionfor the characteristic projectors.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


1992 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Werner J. Ricker

Let Σ be a σ-algebra of subsets of some set Ω and let μ:Σ→[0,∞] be a σ-additive measure. If Σ(μ) denotes the set of all elements of Σ with finite μ-measure (where sets equal μ-a.e. are identified in the usual way), then a metric d can be defined in Σ(μ) by the formulahere E ΔF = (E\F) ∪ (F\E) denotes the symmetric difference of E and F. The measure μ is called separable whenever the metric space (Σ(μ), d) is separable. It is a classical result that μ is separable if and only if the Banach space L1(μ), is separable [8, p.137]. To exhibit non-separable measures is not a problem; see [8, p. 70], for example. If Σ happens to be the σ-algebra of μ-measurable sets constructed (via outer-measure μ*) by extending μ defined originally on merely a semi-ring of sets Γ ⊆ Σ, then it is also classical that the countability of Γ guarantees the separability of μ and hence, also of L1(μ), [8, p. 69].


1993 ◽  
Vol 45 (3) ◽  
pp. 449-469 ◽  
Author(s):  
M. A. Akcoglu ◽  
Y. Déniel

AbstractLet ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averagesof a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in whichwhere φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


1979 ◽  
Vol 31 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Z. Ditzian

The Szász and Baskakov approximation operators are given by1.11.2respectively. For continuous functions on [0, ∞) with exponential growth (i.e. ‖ƒ‖A ≡ supx\ƒ(x)e–Ax\ < M) the modulus of continuity is defined by1.3where ƒ ∈ Lip* (∝, A) for some 0 < ∝ ≦ 2 if w2(ƒ, δ, A) ≦ Mδ∝ for all δ < 1. We shall find a necessary and sufficient condition on the rate of convergence of An(ƒ, x) (representing Sn(ƒ, x) or Vn(ƒ, x)) to ƒ(x) for ƒ(x) ∈ Lip* (∝, A). In a recent paper of M. Becker [1] such conditions were found for functions of polynomial growth (where (1 + \x\N)−1 replaced e–Ax in the above). M. Becker explained the difficulties in treating functions of exponential growth.


Sign in / Sign up

Export Citation Format

Share Document