scholarly journals Finite completely primary rings in which the product of any two zero divisors of a ring is in its coefficient subring

1994 ◽  
Vol 17 (3) ◽  
pp. 463-468
Author(s):  
Yousif Alkhamees

According to general terminology, a ringRis completely primary if its set of zero divisorsJforms an ideal. LetRbe a finite completely primary ring. It is easy to establish thatJis the unique maximal ideal ofRandRhas a coefficient subringS(i.e.R/Jisomorphic toS/pS) which is a Galois ring. In this paper we give the construction of finite completely primary rings in which the product of any two zero divisors is inSand determine their enumeration. We also show that finite rings in which the product of any two zero divisors is a power of a fixed prime p are completely primary rings with eitherJ2=0or their coefficient subring isZ2nwithn=2or3. A special case of these rings is the class of finite rings, studied in [2], in which the product of any two zero divisors is zero.

Author(s):  
Hezron Saka Were ◽  
Maurice Oduor Owino ◽  
Moses Ndiritu Gichuki

In this paper, R is considered a completely primary finite ring and Z(R) is its subset of all zero divisors (including zero), forming a unique maximal ideal. We give a construction of R whose subset of zero divisors Z(R) satisfies the conditions (Z(R))5 = (0); (Z(R))4 ̸= (0) and determine the structures of the unit groups of R for all its characteristics.


2016 ◽  
Vol 12 (3) ◽  
pp. 6021-6026
Author(s):  
Maurice Oduor ◽  
Walwenda Shadrack Adero

Let R be a Completely Primary Finite Ring with a unique maximal ideal Z(R)), satisfying ((Z(R))n−1 ̸= (0) and (Z(R))n = (0): The structures of the units some classes of such rings have been determined. In this paper, we investigate the structures of the zero divisors of R:


2005 ◽  
Vol 2005 (4) ◽  
pp. 579-592
Author(s):  
Chiteng'a John Chikunji

A completely primary finite ring is a ringRwith identity1≠0whose subset of all its zero-divisors forms the unique maximal idealJ. LetRbe a commutative completely primary finite ring with the unique maximal idealJsuch thatJ3=(0)andJ2≠(0). ThenR/J≅GF(pr)and the characteristic ofRispk, where1≤k≤3, for some primepand positive integerr. LetRo=GR(pkr,pk)be a Galois subring ofRand let the annihilator ofJbeJ2so thatR=Ro⊕U⊕V, whereUandVare finitely generatedRo-modules. Let nonnegative integerssandtbe numbers of elements in the generating sets forUandV, respectively. Whens=2,t=1, and the characteristic ofRisp; and whent=s(s+1)/2, for any fixeds, the structure of the group of unitsR∗of the ringRand its generators are determined; these depend on the structural matrices(aij)and on the parametersp,k,r, ands.


1972 ◽  
Vol 24 (6) ◽  
pp. 1122-1128 ◽  
Author(s):  
S. Page

In [1; 2 ; 7] Gabriel, Goldman, and Silver have introduced the notion of a localization of a ring which generalizes the usual notion of a localization of a commutative ring at a prime. These rings may not be local in the sense of having a unique maximal ideal. If we are to obtain information about a ring R from one of its localizations, Qτ (R) say, it seems reasonable that Qτ(R) be a tractable ring. This, of course, is what Goldie, Jans, and Vinsonhaler [4; 3; 8] did in the special case for Q(R) the classical ring of quotients.


1983 ◽  
Vol 26 (3) ◽  
pp. 297-302 ◽  
Author(s):  
J. W. Lorimer

AbstractIn 1929 J. Hjelmslev introduced a geometry over the dual numbers ℝ+tℝ with t2 = Q. The dual numbers form a Hjelmslev ring, that is a local ring whose (unique) maximal ideal is equal to the set of 2 sided zero divisors and whose ideals are totally ordered by inclusion. This paper first shows that if we endow the dual numbers with the product topology of ℝ2, then we obtain the only locally compact connected hausdorfT topological Hjelmslev ring of topological dimension two. From this fact we establish that Hjelmslev's original geometry, suitably topologized, is the only locally compact connected hausdorfr topological desarguesian projective Hjelmslev plane to topological dimension four.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


2021 ◽  
Vol 28 (04) ◽  
pp. 581-600
Author(s):  
Hai Q. Dinh ◽  
Hualu Liu ◽  
Roengchai Tansuchat ◽  
Thang M. Vo

Negacyclic codes of length [Formula: see text] over the Galois ring [Formula: see text] are linearly ordered under set-theoretic inclusion, i.e., they are the ideals [Formula: see text], [Formula: see text], of the chain ring [Formula: see text]. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field [Formula: see text] (i.e., [Formula: see text]), the symbol-pair distance distribution of constacyclic codes over [Formula: see text] verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length [Formula: see text] over [Formula: see text].


1969 ◽  
Vol 12 (3) ◽  
pp. 265-273 ◽  
Author(s):  
James R. Clay ◽  
Donald A. Lawver

In this paper we introduce the concept of Boolean near-rings. Using any Boolean ring with identity, we construct a class of Boolean near-rings, called special, and determine left ideals, ideals, factor near-rings which are Boolean rings, isomorphism classes, and ideals which are near-ring direct summands for these special Boolean near-rings.Blackett [6] discusses the near-ring of affine transformations on a vector space where the near-ring has a unique maximal ideal. Gonshor [10] defines abstract affine near-rings and completely determines the lattice of ideals for these near-rings. The near-ring of differentiable transformations is seen to be simple in [7], For near-rings with geometric interpretations, see [1] or [2].


2012 ◽  
Vol 11 (03) ◽  
pp. 1250055 ◽  
Author(s):  
A. S. KUZMINA

The zero-divisor graph Γ(R) of an associative ring R is the graph whose vertices are all non-zero (one-sided and two-sided) zero-divisors of R, and two distinct vertices x and y are joined by an edge if and only if xy = 0 or yx = 0. [S. P. Redmond, The zero-divisor graph of a noncommutative ring, Int. J. Commut. Rings1(4) (2002) 203–211.] In the present paper, all finite rings with Eulerian zero-divisor graphs are described.


Sign in / Sign up

Export Citation Format

Share Document