Commutative rings in which every prime ideal is contained in a unique maximal ideal

1971 ◽  
Vol 30 (3) ◽  
pp. 459-459 ◽  
Author(s):  
Giuseppe De Marco ◽  
Adalberto Orsatti
1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050034
Author(s):  
H. Behzadipour ◽  
P. Nasehpour

In this paper, we investigate 2-absorbing ideals of commutative semirings and prove that if [Formula: see text] is a nonzero proper ideal of a subtractive valuation semiring [Formula: see text] then [Formula: see text] is a 2-absorbing ideal of [Formula: see text] if and only if [Formula: see text] or [Formula: see text] where [Formula: see text] is a prime ideal of [Formula: see text]. We also show that each 2-absorbing ideal of a subtractive semiring [Formula: see text] is prime if and only if the prime ideals of [Formula: see text] are comparable and if [Formula: see text] is a minimal prime over a 2-absorbing ideal [Formula: see text], then [Formula: see text], where [Formula: see text] is the unique maximal ideal of [Formula: see text].


1969 ◽  
Vol 21 ◽  
pp. 1057-1061 ◽  
Author(s):  
William W. Smith

The main results in this paper relate the concepts of flatness and projectiveness for finitely generated ideals in a commutative ring with unity. In this discussion the idea of a multiplicative ideal is used.Definition.An ideal Jis multiplicative if and only if whenever I is an ideal with I ⊂ J there exists an ideal Csuch that I = JC.Throughout this paper Rwill denote a commutative ring with unity. If I and Jare ideals of R,then I: J = {x| xJ ⊂ I}. By “prime ideal” we will mean “proper prime ideal” and Specie will denote this set of ideals. Ris called a local ring if it has a unique maximal ideal (the ring need not be Noetherian). If P is in Spec R then RPis the quotient ring formed using the complement of P.


2004 ◽  
Vol 03 (04) ◽  
pp. 437-443 ◽  
Author(s):  
ALGIRDAS KAUCIKAS ◽  
ROBERT WISBAUER

Commutative rings in which every prime ideal is the intersection of maximal ideals are called Hilbert (or Jacobson) rings. This notion was extended to noncommutative rings in two different ways by the requirement that prime ideals are the intersection of maximal or of maximal left ideals, respectively. Here we propose to define noncommutative Hilbert rings by the property that strongly prime ideals are the intersection of maximal ideals. Unlike for the other definitions, these rings can be characterized by a contraction property: R is a Hilbert ring if and only if for all n∈ℕ every maximal ideal [Formula: see text] contracts to a maximal ideal of R. This definition is also equivalent to [Formula: see text] being finitely generated as an [Formula: see text]-module, i.e., a liberal extension. This gives a natural form of a noncommutative Hilbert's Nullstellensatz. The class of Hilbert rings is closed under finite polynomial extensions and under integral extensions.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550046 ◽  
Author(s):  
Huanyin Chen ◽  
H. Kose ◽  
Y. Kurtulmaz

A ring R is feckly clean provided that for any a ∈ R there exists an element e ∈ R and a full element u ∈ R such that a = e + u, eR(1 - e) ⊆ J(R). We prove that a ring R is feckly clean if and only if for any a ∈ R, there exists an element e ∈ R such that V(a) ⊆ V(e), V(1 - a) ⊆ V(1 - e) and eR(1 - e) ⊆ J(R), if and only if for any distinct maximal ideals M and N, there exists an element e ∈ R such that e ∈ M, 1 - e ∈ N and eR(1 - e) ⊆ J(R), if and only if J- spec (R) is strongly zero-dimensional, if and only if Max (R) is strongly zero-dimensional and every prime ideal containing J(R) is contained in a unique maximal ideal. More explicit characterizations are also discussed for commutative feckly clean rings.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050061
Author(s):  
Lorenzo Guerrieri

Let [Formula: see text] be a regular local ring of dimension [Formula: see text]. A local monoidal transform of [Formula: see text] is a ring of the form [Formula: see text], where [Formula: see text] is a regular parameter, [Formula: see text] is a regular prime ideal of [Formula: see text] and [Formula: see text] is a maximal ideal of [Formula: see text] lying over [Formula: see text] In this paper, we study some features of the rings [Formula: see text] obtained as infinite directed union of iterated local monoidal transforms of [Formula: see text]. In order to study when these rings are GCD domains, we also provide results in the more general setting of directed unions of GCD domains.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 515 ◽  
Author(s):  
Aykut Emniyet ◽  
Memet Şahin

In this paper, the concept of fuzzy normed ring is introduced and some basic properties related to it are established. Our definition of normed rings on fuzzy sets leads to a new structure, which we call a fuzzy normed ring. We define fuzzy normed ring homomorphism, fuzzy normed subring, fuzzy normed ideal, fuzzy normed prime ideal, and fuzzy normed maximal ideal of a normed ring, respectively. We show some algebraic properties of normed ring theory on fuzzy sets, prove theorems, and give relevant examples.


Sign in / Sign up

Export Citation Format

Share Document