scholarly journals Rotationally invariant periodic solutions of semilinear wave equations

1998 ◽  
Vol 3 (1-2) ◽  
pp. 171-180 ◽  
Author(s):  
Martin Schechter

Under suitable conditions we are able to solve the semilinear wave equation in any dimension. We are also able to compute the essential spectrum of the linear wave operator for the rotationally invariant periodic case.

2020 ◽  
Vol 17 (01) ◽  
pp. 123-139
Author(s):  
Lucas C. F. Ferreira ◽  
Jhean E. Pérez-López

We show global-in-time well-posedness and self-similarity for the semilinear wave equation with nonlinearity [Formula: see text] in a time-weighted framework based on the larger family of homogeneous Besov spaces [Formula: see text] for [Formula: see text]. As a consequence, in some cases of the power [Formula: see text], we cover a initial-data class larger than in some previous results. Our approach relies on dispersive-type estimates and a suitable [Formula: see text]-product estimate in Besov spaces.


Author(s):  
Shi-Zhuo Looi ◽  
Mihai Tohaneanu

Abstract We prove that solutions to the quintic semilinear wave equation with variable coefficients in ${{\mathbb {R}}}^{1+3}$ scatter to a solution to the corresponding linear wave equation. The coefficients are small and decay as $|x|\to \infty$ , but are allowed to be time dependent. The proof uses local energy decay estimates to establish the decay of the $L^{6}$ norm of the solution as $t\to \infty$ .


2020 ◽  
Vol 26 ◽  
pp. 7
Author(s):  
Hui Wei ◽  
Shuguan Ji

This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with x-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with an approximation argument, we prove that there exist infinitely many periodic solutions whenever the period is a rational multiple of the length of the spatial interval. The proof is essentially based on the spectral properties of the wave operator with x-dependent coefficients.


Sign in / Sign up

Export Citation Format

Share Document