forced vibrations
Recently Published Documents


TOTAL DOCUMENTS

922
(FIVE YEARS 145)

H-INDEX

37
(FIVE YEARS 5)

Author(s):  
S. G. Zubairov ◽  
◽  
R. R. Yakhin ◽  
A. N Zotov ◽  
T. I. Salikhov ◽  
...  

The article describes a way to combat fatigue effects in the details of connecting modules of an electric driven centrifugal pump unit for oil production. A constructive solution for implementing the method in relation to complex downhole conditions in the form of a multifunctional damper using a differential piston to transfer it from the transport position when lowering into the well into the working one is shown. For a full-size damper, experimental studies of its vibration- isolating characteristics have been carried out when used in the form of substrates for supporting arms of elastomers of various densities and compositions. The preferred characteristics of elastomers and their ranking for various frequencies of forced vibrations are determined. Keywords: module, connection parts; electrically driven centrifugal pump unit; electrocentrifugal pumping unit; differential piston; damper; sbstrate; vibration velocity.


2021 ◽  
pp. 31-40
Author(s):  
T. V Zinovieva ◽  
V. A Piskunov

The paper deals with a relevant problem of shipbuilding, i.e. calculation of free and forced vibrations of pipeline compensatory bellows. These devices are used to reduce the vibration load caused by ship power machines. When analyzing the vibrations of the compensatory bellows, it is necessary to take into account the liquid contained in the bellows. In this work, the design model of the bellows is represented by a corrugated elastic shell as a material surface with five degrees of freedom. A variant of the classical theory of shells, built on the basis of Lagrangian mechanics, is used. The influence of the liquid is taken into account by two models. First, the liquid is considered to be ideal and incompressible and is considered through the attached mass to the shell. The shell is replaced by a cylindrical surface with a radius in the middle line of the corrugation. To account for the influence of the frequency of bellows oscillations on the attached inertia of the liquid in the calculation we also used the acoustic approximation; and derived a formula for a generalized attached mass of the ideal compressible liquid. The equations of the bellows oscillations under the periodic loading are obtained. The problem has been solved by the finite difference method. The values of natural frequencies of free vibrations are obtained for the compensatory bellows from the corrosion-resistant heat-resistant steel. It is shown that by taking account of the liquid, we significantly change the natural frequencies of the bellows. With high-frequency vibrations it is necessary to take into account the compressibility of the liquid. The problem of the forced vibrations of the bellows caused by a displacement of its end face by the harmonic law is solved. The internal forces and moments are determined, as well as occurring stresses by Mises criterion in the bellows. We found the critical value of the end face displacement at a frequency of 50 Hz, at which the bellows goes into a plastic state.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1133-1154
Author(s):  
Yury A. Alyushin

The scientific novelty of this work is determined by the rationale for the participation in transformations, along with the kinetic energy of particles, of four types of elastic energy, identified by the peculiarities of their phase changes in the oscillation process. Two types are converted into kinetic energy, while the other two types change the deformed state of particles in accordance with the equations of motion due to internal sources. The result is obtained based on the use of the superposition principle in the space of Lagrange variables with the imposition of forced and free oscillations, as well as a new model of mechanics based on the concepts of space, time, and energy with a new scale of average stresses that takes into account the energy of particles in the initial state. In such a model of mechanics, a generalized measure of the elastic energy of particles is a quadratic invariant of asymmetric tensor whose components are partial derivatives of Euler variables with respect to Lagrange variables. The concept of kinematic energy parameters is introduced, which differ from the corresponding volumetric energy densities by a multiplier equal to the modulus of elasticity, which is directly proportional to the density and heat capacity of the material, and inversely proportional to the volumetric compression coefficient. Comparison of the values of kinematic parameters shows that most of the energy required for oscillations is associated with the deformation of particles and comes from internal sources. The mechanisms of transformation of forced vibrations into their own for transverse, torsional, and longitudinal vibrations are considered, as well as the occurrence of resonance when free and forced vibrations are superimposed with the same or a similar frequency. The formation of a new free wave after each cycle of external influences with an increase in amplitude, which occurs mainly due to internal, and not external, energy sources is justified.


2021 ◽  
Vol 1 (2) ◽  
pp. 76-87
Author(s):  
Vladimir Solonenko ◽  
◽  
Janat Musayev ◽  
Algazy Zhauyt ◽  
Valikhan Kuparov ◽  
...  

Violations of the stability of a wagon with an asymmetrically positioned freight can lead to a threat to the safety of train traffic, the safety of freight on the route and transport facilities. The design diagram of a wagon with an asymmetrically located freight drawn up in the article and the equations obtained in an analytical way, oscillations of the sprung mass of a wagon with an asymmetric arrangement of the freight, characterizing the longitudinal and transverse displacement of the center of mass of the freight, can be used for mathematical modeling of forced vibrations and impact on the track of a wagon with asymmetrically located freight in various operating conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3066
Author(s):  
Amin Alibakhshi ◽  
Shahriar Dastjerdi ◽  
Mohammad Malikan ◽  
Victor A. Eremeyev

In recent years, the static and dynamic response of micro/nanobeams made of hyperelasticity materials received great attention. In the majority of studies in this area, the strain-stiffing effect that plays a major role in many hyperelastic materials has not been investigated deeply. Moreover, the influence of the size effect and large rotation for such a beam that is important for the large deformation was not addressed. This paper attempts to explore the free and forced vibrations of a micro/nanobeam made of a hyperelastic material incorporating strain-stiffening, size effect, and moderate rotation. The beam is modelled based on the Euler–Bernoulli beam theory, and strains are obtained via an extended von Kármán theory. Boundary conditions and governing equations are derived by way of Hamilton’s principle. The multiple scales method is applied to obtain the frequency response equation, and Hamilton’s technique is utilized to obtain the free undamped nonlinear frequency. The influence of important system parameters such as the stiffening parameter, damping coefficient, length of the beam, length-scale parameter, and forcing amplitude on the frequency response, force response, and nonlinear frequency is analyzed. Results show that the hyperelastic microbeam shows a nonlinear hardening behavior, which this type of nonlinearity gets stronger by increasing the strain-stiffening effect. Conversely, as the strain-stiffening effect is decreased, the nonlinear frequency is decreased accordingly. The evidence from this study suggests that incorporating strain-stiffening in hyperelastic beams could improve their vibrational performance. The model proposed in this paper is mathematically simple and can be utilized for other kinds of micro/nanobeams with different boundary conditions.


2021 ◽  
Vol 3 (4) ◽  
pp. 724-730
Author(s):  
A. Yu. Zakharov ◽  
M. A. Zakharov

The dynamics of free and forced vibrations of a chain of particles are investigated in a harmonic model taking into account the retardation of interactions between atoms. It is found that the retardation of interactions between particles leads to the non-existence of stationary free vibrations of the crystal lattice. It is shown that in the case of a stable lattice, forced vibrations, regardless of the initial conditions, pass into a stationary regime. A non-statistical dynamic mechanism of the irreversible thermodynamic equilibration is proposed.


Sign in / Sign up

Export Citation Format

Share Document