Multiple Periodic Solutions for an Asymptotically Linear Wave Equation.

1981 ◽  
Author(s):  
K. C. Chang ◽  
S. P. Wu ◽  
Shujie Li





2011 ◽  
Vol 62 (1) ◽  
pp. 164-172 ◽  
Author(s):  
Daewook Kim ◽  
Yong Han Kang ◽  
Mi Jin Lee ◽  
Il Hyo Jung


2019 ◽  
Vol 27 (1) ◽  
pp. 25-41
Author(s):  
Valeria Bacchelli ◽  
Dario Pierotti ◽  
Stefano Micheletti ◽  
Simona Perotto

Abstract We consider an initial-boundary value problem for the classical linear wave equation, where mixed boundary conditions of Dirichlet and Neumann/Robin type are enforced at the endpoints of a bounded interval. First, by a careful application of the method of characteristics, we derive a closed-form representation of the solution for an impulsive Dirichlet data at the left endpoint, and valid for either a Neumann or a Robin data at the right endpoint. Then we devise a reconstruction procedure for identifying both the interval length and the Robin parameter. We provide a corresponding stability result and verify numerically its performance moving from a finite element discretization.







2017 ◽  
Vol 58 ◽  
pp. 1-26 ◽  
Author(s):  
Emmanuel Audusse ◽  
Stéphane Dellacherie ◽  
Minh Hieu Do ◽  
Pascal Omnes ◽  
Yohan Penel


Sign in / Sign up

Export Citation Format

Share Document