Abstract A39: Quantitative FRET technology for SUMOylation cascade and high-throughput screening assay for SUMOylation inhibitor in cancer drug discovery

2013 ◽  
Author(s):  
Jiayu Liao ◽  
Hilda Wiryawan ◽  
Yang Song ◽  
Yan Liu ◽  
Ling Jiang ◽  
...  
2019 ◽  
Vol 25 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Timothy Marlowe ◽  
Carlos Alvarado ◽  
Andrew Rivera ◽  
Felicia Lenzo ◽  
Rohini Nott ◽  
...  

Focal adhesion kinase (FAK) is a promising cancer drug target due to its massive overexpression in multiple solid tumors and its critical role in the integration of signals that control proliferation, invasion, apoptosis, and metastasis. Previous FAK drug discovery and high-throughput screening have exclusively focused on the identification of inhibitors that target the kinase domain of FAK. Because FAK is both a kinase and scaffolding protein, the development of novel screening assays that detect inhibitors of FAK protein–protein interactions remains a critical need. In this report, we describe the development of a high-throughput fluorescence polarization (FP) screening assay that measures the interactions between FAK and paxillin, a focal adhesion–associated protein. We designed a tetramethylrhodamine (TAMRA)-tagged paxillin peptide based on the paxillin LD2 motif that binds to the focal adhesion targeting (FAT) domain with significant dynamic range, specificity, variability, stability, and a Z’-factor suitable for high-throughput screening. In addition, we performed a pilot screen of 1593 compounds using this FP assay, showing its feasibility for high-throughput drug screening. Finally, we identified three compounds that show dose-dependent competition of FAT–paxillin binding. This assay represents the first described high-throughput screening assay for FAK scaffold inhibitors and can accelerate drug discovery efforts for this promising drug target.


2009 ◽  
Vol 65 ◽  
pp. S120
Author(s):  
Gaku Murakami ◽  
Haruhisa Inoue ◽  
Kayoko Tsukita ◽  
Yasuyuki Asai ◽  
Kazuhiro Aiba ◽  
...  

2010 ◽  
Author(s):  
Elena M. Gracheva ◽  
Eduardo J. Martinez ◽  
Jill Thompson ◽  
Dominick Thompson ◽  
Ross L. Cagan

2010 ◽  
Vol 68 ◽  
pp. e311
Author(s):  
Gaku Murakami ◽  
Haruhisa Inoue ◽  
Kayoko Tsukita ◽  
Yasuyuki Asai ◽  
Kazuhiro Aiba ◽  
...  

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Filip Zmuda ◽  
Lalitha Sastry ◽  
Sharon M. Shepherd ◽  
Deuan Jones ◽  
Alison Scott ◽  
...  

ABSTRACT Chagas’ disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially life-threatening condition that has become a global issue. Current treatment is limited to two medicines that require prolonged dosing and are associated with multiple side effects, which often lead to treatment discontinuation and failure. One way to address these shortcomings is through target-based drug discovery on validated T. cruzi protein targets. One such target is the proteasome, which plays a crucial role in protein degradation and turnover through chymotrypsin-, trypsin-, and caspase-like catalytic activities. In order to initiate a proteasome drug discovery program, we isolated proteasomes from T. cruzi epimastigotes and characterized their activity using a commercially available glow-like luminescence-based assay. We developed a high-throughput biochemical assay for the chymotrypsin-like activity of the T. cruzi proteasome, which was found to be sensitive, specific, and robust but prone to luminescence technology interference. To mitigate this, we also developed a counterscreen assay that identifies potential interferers at the levels of both the luciferase enzyme reporter and the mechanism responsible for a glow-like response. Interestingly, we also found that the peptide substrate for chymotrypsin-like proteasome activity was not specific and was likely partially turned over by other catalytic sites of the protein. Finally, we utilized these biochemical tools to screen 18,098 compounds, exploring diverse drug-like chemical space, which allowed us to identify 39 hits that were active in the primary screening assay and inactive in the counterscreen assay.


Sign in / Sign up

Export Citation Format

Share Document