scaffolding protein
Recently Published Documents


TOTAL DOCUMENTS

911
(FIVE YEARS 253)

H-INDEX

69
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Daniel Routledge ◽  
Sally Rogers ◽  
Hassan Ashktorab ◽  
Toby Phesse ◽  
Steffen Scholpp

The Wnt/β-catenin signalling pathway regulates multiple cellular processes during development and many diseases, including cell proliferation, migration, and differentiation. Despite their hydrophobic nature, Wnt proteins exert their function over long distances to induce paracrine signalling. Recent studies have identified several factors involved in Wnt secretion, however, our understanding of how Wnt ligands are transported between cells to interact with their cognate receptors is still debated. Here, we demonstrate that gastric cancer cells utilise cytonemes to transport Wnt3 intercellularly to promote proliferation. Furthermore, we identify the membrane-bound scaffolding protein Flotillin-2 (Flot2), frequently overexpressed in gastric cancer, as a regulator of these cytonemes. Together with the Wnt co-receptor and cytoneme initiator Ror2, Flot2 determines the number and length of Wnt3 cytonemes in gastric cancer. Finally, we show that Flot2 is necessary for Wnt8a cytonemes during zebrafish embryogenesis, suggesting a conserved mechanism for Flot2-mediated Wnt transport on cytonemes in development and disease.


2022 ◽  
Author(s):  
Kacey VanderVorst ◽  
Courtney Dreyer ◽  
Jason Hatakeyama ◽  
George RR Bell ◽  
Anastasia L Berg ◽  
...  

As evidence supporting essential roles for collective cell migration in carcinoma metastasis continues to accumulate, a better understanding of the underlying cellular and molecular mechanisms will be critical to translating these findings to the treatment of advanced cancers. Here we report that Wnt/PCP, a non-canonical Wnt signaling pathway, mediates breast cancer collective migration and metastasis. We observe that mammary gland-specific knockout of Vangl2, a tetraspanin-like scaffolding protein required for Wnt5a-induced signaling and motility in cultured breast cancer cell lines, results in a striking decrease in metastatic efficiency but not primary tumor growth in the MMTV-NDL transgenic mouse model of HER2-positive breast cancer. We also observe that expression levels of core Wnt/PCP components Wnt5a, Vangl1 and Vangl2 are selectively elevated in K14-positive leader cells relative to follower cells within a collectively migrating cohort, and that Vangl2 expression selectively promotes RhoA activation in leading edge cells. Moreover, Vangl expression drives collective migration in three-dimensional ex vivo tumor organoids, and Vangl protein specifically accumulates within pro-migratory filamentous actin-rich protrusions of leader cells. Together, our observations point to a model whereby Wnt/PCP upregulation facilitates breast tumor collective cell motility by selectively augmenting the formation pro-migratory protrusions within leader cells.


2022 ◽  
Author(s):  
Lizbeth de la Cruz ◽  
Raul Riquelme ◽  
Oscar Vivas ◽  
Andres Barria ◽  
Jill B. Jensen

Phosphatidylinositol(4,5)-bisphosphate (PtdInsP2) is an important modulator of many cellular processes and its abundance in the plasma membrane is closely regulated. We examined the hypothesis that the scaffolding protein Dishevelled can bind the lipid kinases PI4K and PIP5K, facilitating synthesis of PtdInsP2 directly from PtdIns. This report used several assays for PtdInsP2 to examine the cooperative function of phosphoinositide kinases and Dishevelled in the context of two receptor signaling cascades. Simultaneous overexpression of PI4KIIIα and PIP5KIγ had a synergistic effect on PtdInsP2 synthesis that was recapitulated by overexpression of Dishevelled. Increasing the activity of Dishevelled by overexpression increased resting plasma membrane PtdInsP2. Knockdown of Dishevelled reduced resting plasma membrane PtdInsP2 and slowed PtdInsP2 resynthesis following receptor activation. We confirm that Dishevelled promotes coupling of PI4KIIIα and PIP5KIγ and show that this interaction is essential for efficient resynthesis of PtdInsP2 following receptor activation.


2022 ◽  
Author(s):  
Anindita Mitra ◽  
Linh Vo ◽  
Imad Soukar ◽  
Ashlesha Chaubal ◽  
Miriam Greenberg ◽  
...  

The SIN3 scaffolding protein is a conserved transcriptional regulator known to fine-tune gene expression. In Drosophila, there are two major isoforms of SIN3, SIN3 220 and SIN3 187, which each assemble into multi-subunit histone modifying complexes. The isoforms have distinct developmental expression patterns and non-redundant functions. Gene regulatory network analyses indicate that both isoforms affect genes encoding proteins in pathways such as the cell cycle and cell morphogenesis. Interestingly, the SIN3 187 isoform uniquely regulates a subset of pathways including post-embryonic development, phosphate metabolism and apoptosis. Target genes in the phosphate metabolism pathway include nuclear-encoded mitochondrial genes coding for proteins responsible for oxidative phosphorylation, important for energy metabolism. Here, we investigate the role of SIN3 isoforms in regulating energy metabolism and cell survival genes. We find that ectopic expression of SIN3 187 represses expression of several nuclear-encoded mitochondrial genes affecting production of ATP and generation of reactive oxygen species (ROS). Forced expression of SIN3 187 also activates several pro-apoptotic and represses a few anti-apoptotic genes. In the SIN3 187 expressing cells, these gene expression patterns are accompanied with an increased sensitivity to paraquat-mediated oxidative stress. These findings indicate that SIN3 187 influences the regulation of mitochondrial function, apoptosis and oxidative stress response in ways that are dissimilar from SIN3 220. The data suggest that the distinct SIN3 histone modifying complexes are deployed in different cellular contexts to maintain cellular homeostasis.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Dora Angyal ◽  
Marcel J. C. Bijvelds ◽  
Marco J. Bruno ◽  
Maikel P. Peppelenbosch ◽  
Hugo R. de Jonge

CFTR, the cystic fibrosis (CF) gene-encoded epithelial anion channel, has a prominent role in driving chloride, bicarbonate and fluid secretion in the ductal cells of the exocrine pancreas. Whereas severe mutations in CFTR cause fibrosis of the pancreas in utero, CFTR mutants with residual function, or CFTR variants with a normal chloride but defective bicarbonate permeability (CFTRBD), are associated with an enhanced risk of pancreatitis. Recent studies indicate that CFTR function is not only compromised in genetic but also in selected patients with an acquired form of pancreatitis induced by alcohol, bile salts or smoking. In this review, we summarize recent insights into the mechanism and regulation of CFTR-mediated and modulated bicarbonate secretion in the pancreatic duct, including the role of the osmotic stress/chloride sensor WNK1 and the scaffolding protein IRBIT, and current knowledge about the role of CFTR in genetic and acquired forms of pancreatitis. Furthermore, we discuss the perspectives for CFTR modulator therapy in the treatment of exocrine pancreatic insufficiency and pancreatitis and introduce pancreatic organoids as a promising model system to study CFTR function in the human pancreas, its role in the pathology of pancreatitis and its sensitivity to CFTR modulators on a personalized basis.


2021 ◽  
Vol 23 (1) ◽  
pp. 123
Author(s):  
Maleck Kadiri ◽  
Martine Charbonneau ◽  
Catherine Lalanne ◽  
Kelly Harper ◽  
Frédéric Balg ◽  
...  

Erosive destruction of joint structures is a critical event in the progression of rheumatoid arthritis (RA), in which fibroblast-like synoviocytes (FLS) are the primary effectors. We previously reported that the ability of RA FLS to degrade extracellular matrix (ECM) components depends on the formation of actin-rich membrane protrusions, called invadosomes, through processes that remain elusive. 14-3-3η belongs to a family of scaffolding proteins involved in a wide range of cellular functions, and its expression is closely related to joint damage and disease activity in RA patients. In this study, we sought to assess the role of 14-3-3η in joint damage by examining its contribution to the invadosome formation phenotype of FLS. Using human primary FLS, we show that 14-3-3η expression is closely associated with their ability to form invadosomes. Furthermore, knockdown of 14-3-3η using shRNAs decreases the level of invadosome formation in RA FLS, whereas addition of the recombinant protein to FLS from healthy individuals promotes their formation. Mechanistic studies suggest that 14-3-3η regulates invadosome formation by increasing Snail expression, a mechanism that involves nuclear exclusion of the transcription repressor FOXO3. Our results implicate the 14-3-3η–FOXO3–Snail axis in promoting the aggressive ECM-degrading phenotype of RA FLS, and suggest a role for this scaffolding protein in cartilage degradation.


2021 ◽  
Author(s):  
Tanya A. Baldwin ◽  
Yong Li ◽  
Autumn Marsden ◽  
Roland F.R. Schindler ◽  
Musi Zhang ◽  
...  

The establishment of macromolecular complexes by scaffolding proteins such as A-kinase anchoring proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for many cardiac functions. We have identified herein a novel AC scaffold, the Popeye domain-containing (POPDC) protein. Unlike other AC scaffolding proteins, POPDC1 binds cAMP with high affinity. The POPDC family of proteins are important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. TREK-1 binds the AC9:POPDC1 complex and co-purifies in a POPDC1-dependent manner with AC9-associated activity in heart. Although the interaction of AC9 and POPDC1 is cAMP independent, TREK-1 association with AC9 and POPDC1 is reduced in an isoproterenol-dependent manner, requiring an intact cAMP binding Popeye domain and AC activity within the complex. We show that deletion of Adcy9 (AC9) gives rise to bradycardia at rest and stress-induced heart rate variability. The phenotype for deletion of Adcy9 is milder than previously observed upon loss of Popdc1, but similar to loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel scaffolding protein for AC9 to regulate heart rate control.


2021 ◽  
Author(s):  
◽  
Rory Nicholas Besaans

<p>Cachexia is a debilitating muscle wasting disease and co-morbidity strongly associated with chronic inflammatory conditions such as cancer, chronic heart failure, chronic obstructive pulmonary disease and sepsis. Cachexia has a strong negative impact on quality of life and research suggests that 20% of cancer patients will die of cachexia. Translation initiation is the most highly regulated step of protein synthesis and the eukaryotic initiation factor 4F (eIF4F) translation initiation complex is the gatekeeper of this process; the eIF4F complex is composed of eIFG, a scaffolding protein, eIF4E, an mRNA cap-recognition protein and eIF4A, an RNA helicase. Inhibition of eIF4A by pateamine A has been shown to rescue muscle wasting in vitro and in vivo, this result has been reproduced with other eIF4A inhibitors. Pateamine A is a sponge-derived natural product with nanomolar toxicity to cancer cells. Surprisingly, at doses well below its anti-neoplastic activity it exerts distinct effects on cachexia. The research in this thesis follows on from previous work in our laboratory with pateamine A in human cell lines. Work on the effects of pateamine A on the proteome suggests that not all the proteins changing in expression are explainable by stressing the translation initiation complex. A model by which motifs in the 5’ UTRs of transcripts are a recognised and removed from the system in a selective manner could help explain these effects. We aimed to target eIF4E, another component of the eIF4F system, with two compounds to see if a comparable dose of eIF4E inhibitors could elicit a pateamine-like response. DMSO, a solvent used extensively in this thesis, had unexpected effects on translation. We conclude that 4E1RCat, a compound developed as a selective inhibitor of eIF4E, is not likely to be useable in further work, due to its window of activity coinciding with an unacceptable concentration of DMSO. Ribavirin, our second compound, showed a proteomic response consistent with its classification as an eIF4E translation initiation inhibitor. The proteome response seen with our eIF4E inhibitors is consistent with disruption of translation initiation. However, the data for 4E1RCat was deemed untrustworthy in the wake of revelations that DMSO, the vehicle in which it is dissolved, exerts an almost identical response. From the results obtained, it was not possible to confidently test whether protein downregulation occurred in response to a 5’UTR sequence motif, as seen for inhibitors of eIF4A. Coupled with the uncertainty associated with the 4E1Rcat results, there were relatively few downregulated proteins from the treatments, and many of these could be explained by the direct biological response to the function of the compound in the treatment. All in all, we have obtained new insights into the effects of DMSO on the proteome which will aid further experimentation. This thesis has laid the groundwork for further investigation of the effects of eIF4F inhibition in the context of better understanding the remediation of cachexia through the eIF4F system.</p>


2021 ◽  
Author(s):  
◽  
Rory Nicholas Besaans

<p>Cachexia is a debilitating muscle wasting disease and co-morbidity strongly associated with chronic inflammatory conditions such as cancer, chronic heart failure, chronic obstructive pulmonary disease and sepsis. Cachexia has a strong negative impact on quality of life and research suggests that 20% of cancer patients will die of cachexia. Translation initiation is the most highly regulated step of protein synthesis and the eukaryotic initiation factor 4F (eIF4F) translation initiation complex is the gatekeeper of this process; the eIF4F complex is composed of eIFG, a scaffolding protein, eIF4E, an mRNA cap-recognition protein and eIF4A, an RNA helicase. Inhibition of eIF4A by pateamine A has been shown to rescue muscle wasting in vitro and in vivo, this result has been reproduced with other eIF4A inhibitors. Pateamine A is a sponge-derived natural product with nanomolar toxicity to cancer cells. Surprisingly, at doses well below its anti-neoplastic activity it exerts distinct effects on cachexia. The research in this thesis follows on from previous work in our laboratory with pateamine A in human cell lines. Work on the effects of pateamine A on the proteome suggests that not all the proteins changing in expression are explainable by stressing the translation initiation complex. A model by which motifs in the 5’ UTRs of transcripts are a recognised and removed from the system in a selective manner could help explain these effects. We aimed to target eIF4E, another component of the eIF4F system, with two compounds to see if a comparable dose of eIF4E inhibitors could elicit a pateamine-like response. DMSO, a solvent used extensively in this thesis, had unexpected effects on translation. We conclude that 4E1RCat, a compound developed as a selective inhibitor of eIF4E, is not likely to be useable in further work, due to its window of activity coinciding with an unacceptable concentration of DMSO. Ribavirin, our second compound, showed a proteomic response consistent with its classification as an eIF4E translation initiation inhibitor. The proteome response seen with our eIF4E inhibitors is consistent with disruption of translation initiation. However, the data for 4E1RCat was deemed untrustworthy in the wake of revelations that DMSO, the vehicle in which it is dissolved, exerts an almost identical response. From the results obtained, it was not possible to confidently test whether protein downregulation occurred in response to a 5’UTR sequence motif, as seen for inhibitors of eIF4A. Coupled with the uncertainty associated with the 4E1Rcat results, there were relatively few downregulated proteins from the treatments, and many of these could be explained by the direct biological response to the function of the compound in the treatment. All in all, we have obtained new insights into the effects of DMSO on the proteome which will aid further experimentation. This thesis has laid the groundwork for further investigation of the effects of eIF4F inhibition in the context of better understanding the remediation of cachexia through the eIF4F system.</p>


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1259
Author(s):  
Avijit Mallick ◽  
Bhagwati P. Gupta

The energy sensor AMP kinase (AMPK) and the master scaffolding protein, AXIN, are two major regulators of biological processes in metazoans. AXIN-dependent regulation of AMPK activation plays a crucial role in maintaining metabolic homeostasis during glucose-deprived and energy-stressed conditions. The two proteins are also required for muscle function. While studies have refined our knowledge of various cellular events that promote the formation of AXIN-AMPK complexes and the involvement of effector proteins, more work is needed to understand precisely how the pathway is regulated in response to various forms of stress. In this review, we discuss recent data on AXIN and AMPK interaction and its role in physiological changes leading to improved muscle health and an extension of lifespan. We argue that AXIN-AMPK signaling plays an essential role in maintaining muscle function and manipulating the pathway in a tissue-specific manner could delay muscle aging. Therefore, research on understanding the factors that regulate AXIN-AMPK signaling holds the potential for developing novel therapeutics to slow down or revert the age-associated decline in muscle function, thereby extending the healthspan of animals.


Sign in / Sign up

Export Citation Format

Share Document