Abstract C162: Antibody-Drug Conjugates (ADCs) with novel IGN DNA-alkylating agents display potent antigen-specific activity against hematologic and solid tumor xenograft models.

Author(s):  
Kathleen Whiteman ◽  
Holly Johnson ◽  
Alan Wilhelm ◽  
Michael Miller ◽  
Wei Li ◽  
...  
2010 ◽  
Author(s):  
Chin Pan ◽  
Colin Chong ◽  
Orville Cortez ◽  
Alison Witte ◽  
Ayesha Nazeer ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hung-Ju Hsu ◽  
Chao-Ping Tung ◽  
Chung-Ming Yu ◽  
Chi-Yung Chen ◽  
Hong-Sen Chen ◽  
...  

AbstractMesothelin (MSLN) is an attractive candidate of targeted therapy for several cancers, and hence there are increasing needs to develop MSLN-targeting strategies for cancer therapeutics. Antibody–drug conjugates (ADCs) targeting MSLN have been demonstrated to be a viable strategy in treating MSLN-positive cancers. However, developing antibodies as targeting modules in ADCs for toxic payload delivery to the tumor site but not to normal tissues is not a straightforward task with many potential hurdles. In this work, we established a high throughput engineering platform to develop and optimize anti-MSLN ADCs by characterizing more than 300 scFv CDR-variants and more than 50 IgG CDR-variants of a parent anti-MSLN antibody as candidates for ADCs. The results indicate that only a small portion of the complementarity determining region (CDR) residues are indispensable in the MSLN-specific targeting. Also, the enhancement of the hydrophilicity of the rest of the CDR residues could drastically increase the overall solubility of the optimized anti-MSLN antibodies, and thus substantially improve the efficacies of the ADCs in treating human gastric and pancreatic tumor xenograft models in mice. We demonstrated that the in vivo treatments with the optimized ADCs resulted in almost complete eradication of the xenograft tumors at the treatment endpoints, without detectable off-target toxicity because of the ADCs’ high specificity targeting the cell surface tumor-associated MSLN. The technological platform can be applied to optimize the antibody sequences for more effective targeting modules of ADCs, even when the candidate antibodies are not necessarily feasible for the ADC development due to the antibodies’ inferior solubility or affinity/specificity to the target antigen.


2019 ◽  
Vol 29 (17) ◽  
pp. 2455-2458
Author(s):  
Emily E. Reid ◽  
Katie E. Archer ◽  
Manami Shizuka ◽  
Molly A. McShea ◽  
Erin K. Maloney ◽  
...  

2016 ◽  
Vol 16 (7) ◽  
pp. 883-893 ◽  
Author(s):  
Serengulam V. Govindan ◽  
Robert M. Sharkey ◽  
David M. Goldenberg

2019 ◽  
Author(s):  
Deng Pan ◽  
Yubo Tang ◽  
Jiao Tong ◽  
Chengmei Xie ◽  
Jiaxi Chen ◽  
...  

AbstractBackgroundAntibodies targeting abnormally glycosylated proteins have been ineffective in treating cancer. Antibody-drug conjugates are emerging as an efficient option, which allow specific delivery of drugs into tumors. We and others have dissected the abnormally glycosylated tandem repeat region of MUC1 glycoprotein as three site-specific glycosylated neoantigen peptide motifs (PDTR, GSTA, GVTS) for monoclonal antibody binding.MethodsInternalization of monoclonal antibodies was studied by immunofluorescence staining and colocalization with lysosomal markers in live cells. Antibody positivity in tumor and peritumoral tissue samples were studied by immunohistochemistry. The efficacy of anti-MUC1 ADCs were evaluated with various cancer cell lines and mouse tumor xenograft model.ResultsWe describe an anti-MUC1 ADC by conjugating GSTA neoantigen-specific 16A with monomethyl auristatin E (MMAE). 16A-MMAE showed potent antitumoral efficacy with IC50 ranging from 0.2 to 49.4 nM toward multiple types of cancer cells. In vivo, 16A-MMAE showed dose-dependent inhibition of tumor growth in mouse xenograft of NCI-H838 NSCLC cell line, with minimum effective dose at 1 mg/kg. At the dose of 3 mg/kg, 16A-MMAE did not cause significant toxicity in a transgenic mouse expressing human MUC1.ConclusionsThe high antitumoral efficacy of 16A-MMAE suggest that aberrant glycosylated MUC1 neoantigen is a target with high positivity in multiple cancer types for ADC development. Personalized therapy may be achieved by development of glycosite-specific antibody-drug conjugates.


2020 ◽  
Vol 12 (570) ◽  
pp. eabf4686
Author(s):  
Justin T. Baca

Coadministration of antibody-drug conjugates with the parent antibody improves delivery to solid tumor beds.


Sign in / Sign up

Export Citation Format

Share Document