antitumor activity
Recently Published Documents





2022 ◽  
Vol 1249 ◽  
pp. 131556
Surendra Gulla ◽  
Vajra C. Reddy ◽  
Prasanna Babu Araveti ◽  
Dakshayani Lomada ◽  
Anand Srivastava ◽  

2022 ◽  
Vol 16 ◽  
pp. 101322
Chunxiao Xu ◽  
Bo Marelli ◽  
Jin Qi ◽  
Guozhong Qin ◽  
Huakui Yu ◽  

2022 ◽  
pp. candisc.0808.2021
Meriem Messaoudene ◽  
Reilly Pidgeon ◽  
Corentin Richard ◽  
Mayra Ponce ◽  
Khoudia Diop ◽  

Ricardo Romero-Arguelles ◽  
César Iván Romo-Sáenz ◽  
Karla Morán-Santibáñez ◽  
Patricia Tamez-Guerra ◽  
Ramiro Quintanilla-Licea ◽  

Plant-associated microorganisms represent a potential source of new antitumor compounds. The aim of the present study was to isolate endophytic and rhizosphere Gram-positive bacteria from Ibervillea sonorae and produce extracts with antitumor activity. Methanol and ethyl acetate extracts were obtained from 28 d bacterial fermentation, after which murine L5178Y-R lymphoma cells growth inhibition was evaluated at concentrations ranging from 15.62 µg/mL to 500 µg/mL by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide reduction colorimetric assay. IC50 and the selectivity index (SI) were calculated and compared with healthy control human peripheral blood mononuclear cells (PBMC). Identification of the isolated strains was performed using the 16S ribosomal gene and by MALDI-TOF MS mass spectrometry. The endophytic and rhizosphere bacterial extracts from strains ISE-B22, ISE-B26, ISE-B27, ISS-A01, ISS-A06, and ISS-A16 showed significant (p < 0.05) L5178Y-R cell growth inhibition, compared with an untreated control. The rhizosphere Micromonospora echinospora isolate ISS-A16 showed the highest (90.48%) percentage of lymphoma cells growth inhibition and SI (19.1) for PBMC, whereas the Bacillus subtilis ISE-B26 isolate caused significant (p < 0.01) growth inhibition (84.32%) and a SI of 5.2. Taken together, results of the present study evidenced antitumor effects by I. sonorae endophytic and rhizosphere bacteria culture extracts. Further research will involve the elucidation of the compounds that exert the antitumor activity and their evaluation in pre-clinical studies.

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 59
Ngoc The Nguyen ◽  
Quynh Anh Bui ◽  
Hoang Huong Nhu Nguyen ◽  
Tien Thanh Nguyen ◽  
Khanh Linh Ly ◽  

Nanosized multi-drug delivery systems provide synergistic effects between drugs and bioactive compounds, resulting in increased overall efficiency and restricted side effects compared to conventional single-drug chemotherapy. In this study, we develop an amphiphilic heparin-poloxamer P403 (HP403) nanogel that could effectively co-load curcuminoid (Cur) and cisplatin hydrate (CisOH) (HP403@CisOH@Cur) via two loading mechanisms. The HP403 nanogels and HP403@CisOH@Cur nanogels were closely analyzed with 1H-NMR spectroscopy, FT-IR spectroscopy, TEM, and DLS, exhibiting high stability in spherical forms. In drug release profiles, accelerated behavior of Cur and CisOH at pH 5.5 compared with neutral pH was observed, suggesting effective delivery of the compounds in tumor sites. In vitro studies showed high antitumor activity of HP403@CisOH@Cur nanogels, while in vivo assays showed that the dual-drug platform prolonged the survival time of mice and prevented tail necrosis. In summary, HP403@CisOH@Cur offers an intriguing strategy to achieve the cisplatin and curcumin synergistic effect in a well-designed delivery platform that increases antitumor effectiveness and overcomes undesired consequences caused by cisplatin in breast cancer treatment.

Rafat Milad Mohareb ◽  
Noha M. Asaad Bagato ◽  
Ibrahim Taha Radwan

Background: Cancer is a disease illustrated by a shift in the controlled mechanisms that control both cell proliferation and differentiation. It is regarded as a prime health problem worldwide, leading cause of human death-rate exceeded only by cardiovascular diseases. Many reported work was concerned with the discovery of new antitumor compounds this encourage us to synthesis new anticancer agents. Objective: In this work, we are aiming to synthesize target molecules from 1,3-dicarbonyl compounds through many heterocyclization reactions. Method: The reaction of either 4-methylaniline (1a) or 1-naphthylamine (1b) with diethyl malonate (2) gave the anilide derivatives 3a and 3b, respectively. The latter products underwent a series of heterocyclization reactions to give the pyridine, pyran andthiazole derivatives which confirmed with the required spectral data. Results: Thein-vitro antitumor evaluations of the newly synthesized products against four cancer cell lines MCF-7, NCI-H460, SF-268 and WI 38 as normal cell line were screened and the data revealed that compounds 11a, 18b, 18c and 20d showed high antitumor activity and 20dindividualize with potential antitumor activity towards cell lines with lowest cytotoxicity effect. Both EGFR and PIM-1 enzyme inhibition were investigated for the compound 20d and his inhibition effect was promising for each enzyme showing IC50=45.67 ng and 553.3 ng for EGFR and PIM-1, respectively. Conclusion: Molecular docking results of compound 20d showed a strong binding interactions on both enzymes, where, good binding modes obtained on case of EGFR, which closely similar to the binding mode of standard Erlotinib. While, 20d showed complete superimposition binding interactions with VRV-cocrystallized ligand of PIM-1 that may expounds the in-vitro antitumor activity.

2022 ◽  
Vol 23 (2) ◽  
pp. 730
Marina Filimonova ◽  
Anna Shitova ◽  
Olga Soldatova ◽  
Ljudmila Shevchenko ◽  
Alina Saburova ◽  

We have previously demonstrated a high antitumor potential of NOS inhibitor T1023 (1-isobutanoyl-2-isopropylisothiourea hydrobromide): antitumor antiangiogenic activity in several animal tumor models and its ability to synergistically enhance the antitumor effects of bevacizumab, cyclophosphamide and γ-radiation. At the same time, rather rapid adaptation of experimental neoplasias to T1023 treatment was often observed. We attempted to enhance the antitumor activity of this NOS inhibitor by supplementing its molecular structure with a PDK-inhibiting fragment, dichloroacetate (DCA), which is capable of hypoxia-oriented toxic effects. We synthesized compound T1084 (1-isobutanoyl-2-isopropylisothiourea dichloroacetate). Its toxic properties, NOS-inhibiting and PDK-inhibiting activity in vivo, and antitumor activity on the mouse Ehrlich carcinoma model (SEC) were investigated in compare with T1023 and Na-DCA. We found that the change of the salt-forming acid from HBr to DCA does not increase the toxicity of 1-isobutanoyl-2-isopropylisothiourea salts, but significantly expands the biochemical and anti-tumor activity. New compound T1084 realizes in vivo NOS-inhibiting and PDK-inhibiting activity, quantitatively, at the level of the previous compounds, T1023 and Na-DCA. In two independent experiments on SEC model, a pronounced synergistic antitumor effect of T1084 was observed in compare with T1023 and Na-DCA at equimolar doses. There were no signs of SEC adaptation to T1084 treatment, while experimental neoplasia rapidly desensitized to the separate treatment of both T1023 and Na-DCA. The totality of the data obtained indicates that the combination of antiangiogenic and hypoxia-oriented toxic effects (in this case, within the molecular structure of the active substance) can increase the antitumor effect and suppress the development of hypoxic resistance of neoplasias. In general, the proposed approach can be used for the design of new anticancer agents.

2022 ◽  
Vol 11 ◽  
Michael S. Gordon ◽  
Geoffrey I. Shapiro ◽  
John Sarantopoulos ◽  
Dejan Juric ◽  
Brian Lu ◽  

BackgroundCitarinostat (CC-96241; previously ACY-241), an oral inhibitor of histone deacetylases (HDACs) with selectivity for HDAC6, has demonstrated synergistic anticancer activity with paclitaxel in multiple solid tumor models. Combination therapy using citarinostat with paclitaxel was evaluated in this phase Ib 3 + 3 dose-escalation study in patients with advanced solid tumors.MethodsPatients with previously treated advanced solid tumors received citarinostat 180, 360, or 480 mg once daily on days 1 to 21 plus paclitaxel 80 mg/m2 on days 1, 8, and 15 of 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was determination of the maximum tolerated dose (MTD). Secondary endpoints included safety, antitumor activity, pharmacokinetics, and pharmacodynamics.ResultsTwenty patients were enrolled and received study treatment; 15 had received prior taxane therapy. No dose-limiting toxicities were reported at any dose; therefore, the MTD was not identified. Citarinostat 360 vs 480 mg was associated with reduced incidence and severity of neutropenia. Three patients experienced a confirmed partial response and 13 achieved stable disease. Pharmacokinetic parameters were linear up to citarinostat 360 mg, the dose at which the highest levels of histone and tubulin acetylation were observed in peripheral blood mononuclear cells.ConclusionsThe combination of citarinostat plus paclitaxel showed an acceptable safety profile, with no unexpected or dose-limiting toxicities and potential evidence of antitumor activity in patients with heavily pretreated advanced solid tumors. Citarinostat 360 mg once daily is considered the recommended phase II dose for use in combination with paclitaxel 80 mg/m2 every 3 of 4 weeks. This trial is registered on (NCT02551185).

David M. O'Malley ◽  
Giovanni Mendonca Bariani ◽  
Philippe A. Cassier ◽  
Aurelien Marabelle ◽  
Aaron R. Hansen ◽  

PURPOSE Pembrolizumab demonstrated durable antitumor activity in patients with previously treated, advanced microsatellite instability–high or mismatch repair–deficient (MSI-H/dMMR) tumors, including endometrial cancer, in the nonrandomized, open-label, multicohort, phase II KEYNOTE-158 study ( NCT02628067 ). We report efficacy and safety outcomes for patients with MSI-H/dMMR endometrial cancer enrolled in KEYNOTE-158. METHODS Eligible patients from cohorts D (endometrial cancer, regardless of MSI-H/dMMR status) and K (any MSI-H/dMMR solid tumor, except colorectal) with previously treated, advanced MSI-H/dMMR endometrial cancer received pembrolizumab 200 mg once every 3 weeks for 35 cycles. The primary end point was objective response rate per RECIST version 1.1 by independent central radiologic review. Secondary end points included duration of response, progression-free survival, overall survival, and safety. RESULTS As of October 5, 2020, 18 of 90 treated patients (20%) had completed 35 cycles of pembrolizumab and 52 (58%) had discontinued treatment. In the efficacy population (patients who received ≥ 1 dose of pembrolizumab and had ≥ 26 weeks of follow-up; N = 79), the median time from first dose to data cutoff was 42.6 (range, 6.4-56.1) months. The objective response rate was 48% (95% CI, 37 to 60), and median duration of response was not reached (2.9-49.7+ months). Median progression-free survival was 13.1 (95% CI, 4.3 to 34.4) months, and median overall survival was not reached (95% CI, 27.2 months to not reached). Among all treated patients, 76% had ≥ 1 treatment-related adverse event (grades 3-4, 12%). There were no fatal treatment-related events. Immune-mediated adverse events or infusion reactions occurred in 28% of patients (grades 3-4, 7%; no fatal events). CONCLUSION Pembrolizumab demonstrated robust and durable antitumor activity and encouraging survival outcomes with manageable toxicity in patients with previously treated, advanced MSI-H/dMMR endometrial cancer.

Mi Hou ◽  
Ya‐Yu Zou ◽  
Si‐Li Fan ◽  
Xiao‐Qin Li ◽  
Li‐Hui Shao ◽  

Sign in / Sign up

Export Citation Format

Share Document