Abstract 2118: Differential efficiency in the deletion of estrogen receptor β DNA binding domain generates distinct phenotypes in the mouse ventral prostate and ovary

Author(s):  
Laure Maneix ◽  
Per Antonson ◽  
Sabrina S. Rochel-Maia ◽  
Hyun-Jin Kim ◽  
Margaret Warner ◽  
...  
2005 ◽  
Vol 19 (6) ◽  
pp. 1412-1417 ◽  
Author(s):  
Jan-Åke Gustafsson

Abstract Our interest in nuclear receptors (NRs) originated from early studies on hepatic steroid metabolism. We discovered a new hypothalamo-pituitary-liver axis, imprinted neonatally by androgens and operating through sexually differentiated GH secretory patterns. Male and female patterns have opposite effects on sexually differentiated hepatic genes, explaining sexually dimorphic liver patterns. To further understand steroid action, we purified the glucocorticoid receptor (GR) leading to our discovery of the NR three-domain structure, with separable DNA binding domain and ligand binding domains and a third domain now known to have transcriptional regulatory properties. Knowledge of this domain structure has been immensely important for deciphering NR actions. Using this first purified NR, we collaborated with Keith Yamamoto and first demonstrated specific NR binding to DNA. This also was the first demonstration of a mammalian transcription factor, a breakthrough that led to discovery of NR response elements. In further collaboration with Yamamoto, we cloned the first NR cDNA sequences, leading to cloning of the superfamily of NR genes. With Yamamoto and Kaptein, we determined the first three-dimensional NR structure, that of DNA binding domain. Later work on orphan receptors resulted in the first discovery of: 1) endogenous ligands for an orphan receptor (fatty acids as activators of peroxisomal proliferator-activated receptor α); 2) liver X receptor β (OR-1) and its role in central nervous system cholesterol homeostasis; and 3) estrogen receptor β, leading to a paradigm shift in understanding of estrogen signaling, of importance in endocrinology, immunology, and oncology and to development of estrogen receptor β agonists for treatment of autoimmune diseases, prostate disease, depression, and ovulatory dysfunction.


1992 ◽  
Vol 12 (5) ◽  
pp. 2037-2042
Author(s):  
A M Nardulli ◽  
D J Shapiro

We have used circular permutation analysis to determine whether binding of purified Xenopus laevis estrogen receptor DNA-binding domain (DBD) to a DNA fragment containing an estrogen response element (ERE) causes the DNA to bend. Gel mobility shift assays showed that DBD-DNA complexes formed with fragments containing more centrally located EREs migrated more slowly than complexes formed with fragments containing EREs near the ends of the DNA. DNA bending standards were used to determine that the degree of bending induced by binding of the DBD to an ERE was approximately 34 degrees. A 1.55-fold increase in the degree of bending was observed when two EREs were present in the DNA fragment. These in vitro studies suggest that interaction of nuclear receptors with their hormone response elements in vivo may result in an altered DNA conformation.


1997 ◽  
Vol 17 (6) ◽  
pp. 3173-3180 ◽  
Author(s):  
J Kim ◽  
G de Haan ◽  
A M Nardulli ◽  
D J Shapiro

Binding of many eukaryotic transcription regulatory proteins to their DNA recognition sequences results in conformational changes in DNA. To test the effect of altering DNA topology by prebending a transcription factor binding site, we examined the interaction of the estrogen receptor (ER) DNA binding domain (DBD) with prebent estrogen response elements (EREs). When the ERE in minicircle DNA was prebent toward the major groove, which is in the same direction as the ER-induced DNA bend, there was no significant effect on ER DBD binding relative to the linear counterparts. However, when the ERE was bent toward the minor groove, in a direction that opposes the ER-induced DNA bend, there was a four- to eightfold reduction in ER DBD binding. Since reduced binding was also observed with the ERE in nicked circles, the reduction in binding was not due to torsional force induced by binding of ER DBD to the prebent ERE in covalently closed minicircles. To determine the mechanism responsible for reduced binding to the prebent ERE, we examined the effect of prebending the ERE on the association and dissociation of the ER DBD. Binding of the ER DBD to ERE-containing minicircles was rapid when the EREs were prebent toward either the major or minor groove of the DNA (k(on) of 9.9 x 10(6) to 1.7 x 10(7) M(-1) s(-1)). Prebending the ERE toward the minor groove resulted in an increase in k(off) of four- to fivefold. Increased dissociation of the ER DBD from the ERE is, therefore, the major factor responsible for reduced binding of the ER DBD to an ERE prebent toward the minor groove. These data provide the first direct demonstration that the interaction of a eukaryotic transcription factor with its recognition sequence can be strongly influenced by altering DNA topology through prebending the DNA.


1999 ◽  
Vol 19 (2) ◽  
pp. 1002-1015 ◽  
Author(s):  
Dongsheng Chen ◽  
Paul E. Pace ◽  
R. Charles Coombes ◽  
Simak Ali

ABSTRACT Phosphorylation provides an important mechanism by which transcription factor activity is regulated. Estrogen receptor α (ERα) is phosphorylated on multiple sites, and stimulation of a number of growth factor receptors and/or protein kinases leads to ligand-independent and/or synergistic increase in transcriptional activation by ERα in the presence of estrogen. Here we show that ERα is phosphorylated by protein kinase A (PKA) on serine-236 within the DNA binding domain. Mutation of serine-236 to glutamic acid prevents DNA binding by inhibiting dimerization by ERα, whereas mutation to alanine has little effect on DNA binding or dimerization. Furthermore, PKA overexpression or activation of endogenous PKA inhibits dimerization in the absence of ligand. This inhibition is overcome by the addition of 17β-estradiol or the partial agonist 4-hydroxy tamoxifen. Interestingly, treatment with the complete antagonist ICI 182,780 does not overcome the inhibitory effect of PKA activation. Our results indicate that in the absence of ligand ERα forms dimers through interaction between DNA binding domains and that dimerization mediated by the ligand binding domain only occurs upon ligand binding but that the complete antagonist ICI 182,780 prevents dimerization through the ligand-binding domain. Heterodimer formation between ERα and ERβ is similarly affected by PKA phosphorylation of serine 236 of ERα. However, 4-hydroxytamoxifen is unable to overcome inhibition of dimerization by PKA. Thus, phosphorylation of ERα in the DNA binding domain provides a mechanism by which dimerization and thereby DNA binding by the estrogen receptor is regulated.


1998 ◽  
Vol 12 (11) ◽  
pp. 1733-1748 ◽  
Author(s):  
Hsiao-Lai C. Liu ◽  
Elina Golder-Novoselsky ◽  
Marian H. Seto ◽  
Lynn Webster ◽  
John McClary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document