Abstract 794: The ATR inhibitor VE-821 in combination with the novel topoisomerase I inhibitor LMP-400 selectively kills cancer cells by disabling DNA replication initiation and fork elongation

Author(s):  
Rozenn Jossé ◽  
Scott E. Martin ◽  
Rajarshi Guha ◽  
Pinar Ormanoglu ◽  
Thomas Pfister ◽  
...  
2014 ◽  
Vol 74 (23) ◽  
pp. 6968-6979 ◽  
Author(s):  
Rozenn Jossé ◽  
Scott E. Martin ◽  
Rajarshi Guha ◽  
Pinar Ormanoglu ◽  
Thomas D. Pfister ◽  
...  

2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Kang Liu ◽  
Joshua D. Graves ◽  
Yu-Ju Lee ◽  
Fang-Tsyr Lin ◽  
Weei-Chin Lin

ABSTRACT Cdk2-dependent TopBP1-treslin interaction is critical for DNA replication initiation. However, it remains unclear how this association is terminated after replication initiation is finished. Here, we demonstrate that phosphorylation of TopBP1 by Akt coincides with cyclin A activation during S and G2 phases and switches the TopBP1-interacting partner from treslin to E2F1, which results in the termination of replication initiation. Premature activation of Akt in G1 phase causes an early switch and inhibits DNA replication. TopBP1 is often overexpressed in cancer and can bypass control by Cdk2 to interact with treslin, leading to enhanced DNA replication. Consistent with this notion, reducing the levels of TopBP1 in cancer cells restores sensitivity to a Cdk2 inhibitor. Together, our study links Cdk2 and Akt pathways to the control of DNA replication through the regulation of TopBP1-treslin interaction. These data also suggest an important role for TopBP1 in driving abnormal DNA replication in cancer.


2007 ◽  
Vol 27 (16) ◽  
pp. 5806-5818 ◽  
Author(s):  
Jennifer A. Seiler ◽  
Chiara Conti ◽  
Ali Syed ◽  
Mirit I. Aladjem ◽  
Yves Pommier

ABSTRACT To investigate the contribution of DNA replication initiation and elongation to the intra-S-phase checkpoint, we examined cells treated with the specific topoisomerase I inhibitor camptothecin. Camptothecin is a potent anticancer agent producing well-characterized replication-mediated DNA double-strand breaks through the collision of replication forks with topoisomerase I cleavage complexes. After a short dose of camptothecin in human colon carcinoma HT29 cells, DNA replication was inhibited rapidly and did not recover for several hours following drug removal. That inhibition occurred preferentially in late-S-phase, compared to early-S-phase, cells and was due to both an inhibition of initiation and elongation, as determined by pulse-labeling nucleotide incorporation in replication foci and DNA fibers. DNA replication was actively inhibited by checkpoint activation since 7-hydroxystaurosporine (UCN-01), the specific Chk1 inhibitor CHIR-124, or transfection with small interfering RNA targeting Chk1 restored both initiation and elongation. Abrogation of the checkpoint markedly enhanced camptothecin-induced DNA damage at replication sites where histone γ-H2AX colocalized with replication foci. Together, our study demonstrates that the intra-S-phase checkpoint is exerted by Chk1 not only upon replication initiation but also upon DNA elongation.


2003 ◽  
Vol 14 (8) ◽  
pp. 3427-3436 ◽  
Author(s):  
Wenyi Feng ◽  
Luis Rodriguez-Menocal ◽  
Gökhan Tolun ◽  
Gennaro D'Urso

Genetic evidence suggests that DNA polymerase epsilon (Pol ϵ) has a noncatalytic essential role during the early stages of DNA replication initiation. Herein, we report the cloning and characterization of the second largest subunit of Pol ϵ in fission yeast, called Dpb2. We demonstrate that Dpb2 is essential for cell viability and that a temperature-sensitive mutant of dpb2 arrests with a 1C DNA content, suggesting that Dpb2 is required for initiation of DNA replication. Using a chromatin immunoprecipitation assay, we show that Dpb2, binds preferentially to origin DNA at the beginning of S phase. We also show that the C terminus of Pol ϵ associates with origin DNA at the same time as Dpb2. We conclude that Dpb2 is an essential protein required for an early step in DNA replication. We propose that the primary function of Dpb2 is to facilitate assembly of the replicative complex at the start of S phase. These conclusions are based on the novel cell cycle arrest phenotype of the dpb2 mutant, on the previously uncharacterized binding of Dpb2 to replication origins, and on the observation that the essential function of Pol ϵ is not dependent on its DNA synthesis activity.


2019 ◽  
Vol 16 (3) ◽  
pp. 272-277 ◽  
Author(s):  
Rasmus N. Klitgaard ◽  
Anders Løbner-Olesen

Background:One of many strategies to overcome antibiotic resistance is the discovery of compounds targeting cellular processes, which have not yet been exploited.Materials and Methods:Using various genetic tools, we constructed a novel high throughput, cellbased, fluorescence screen for inhibitors of chromosome replication initiation in bacteria.Results:The screen was validated by expression of an intra-cellular cyclic peptide interfering with the initiator protein DnaA and by over-expression of the negative initiation regulator SeqA. We also demonstrated that neither tetracycline nor ciprofloxacin triggers a false positive result. Finally, 400 extracts isolated mainly from filamentous actinomycetes were subjected to the screen.Conclusion:We concluded that the presented screen is applicable for identifying putative inhibitors of DNA replication initiation in a high throughput setup.


Sign in / Sign up

Export Citation Format

Share Document