human colon
Recently Published Documents





2023 ◽  
Vol 83 ◽  
Maryam A. Al-Ghamdi ◽  
A. AL-Enazy ◽  
E.A Huwait ◽  
A. Albukhari ◽  
S. Harakeh ◽  

Abstract Colorectal cancer (CRC) is one of the most common cancers leading to comorbidities and mortalities globally. The rational of current study was to evaluate the combined epigallocatechin gallate and quercetin as a potent antitumor agent as commentary agent for therapeutic protocol. The present study investigated the effect of epigallocatechin Gallate (EGCG) (150mg) and quercetin (200mg) at different proportions on proliferation and induction of apoptosis in human colon cancer cells (HCT-116). Cell growth, colonogenic, Annexin V in addition cell cycle were detected in response to phytomolecules. Data obtained showed that, the colony formation was inhibited significantly in CRC starting from the lowest concentration tested of 10 µg/mL resulting in no colonies as visualized by a phase-contrast microscope. Data showed a significant elevation in the annexin V at 100 µg/mL EGCG(25.85%) and 150 µg/mL quercetin (48.35%). Moreover, cell cycle analysis showed that this combination caused cell cycle arrest at the G1 phase at concentration of 100 µg/mL (72.7%) and 150 µg/mL (75.25%). The combined effect of epigallocatechin Gallate and quercetin exert antiproliferative activity against CRC, it is promising in alternative conventional chemotherapeutic agent.

BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Tamara Babic ◽  
Sandra Dragicevic ◽  
Marko Miladinov ◽  
Zoran Krivokapic ◽  
Aleksandra Nikolic

Abstract Background Transcripts with alternative 5′-untranslated regions (UTRs) result from the activity of alternative promoters and they can determine gene expression by influencing its stability and translational efficiency, thus executing complex regulation of developmental, physiological and pathological processes. Transcriptional regulation of human SMAD4, a key tumor suppressor deregulated in most gastrointestinal cancers, entails four alternative promoters. These promoters and alternative transcripts they generate remain unexplored as contributors to the SMAD4 deregulation in cancer. The aim of this study was to investigate the relative abundance of the transcript SMAD4–201 in colorectal cell lines and tissues in order to establish if its fluctuations may be associated with colorectal cancer (CRC). Methods Relative abundance of SMAD4–201 in total SMAD4 mRNA was analyzed using quantitative PCR in a set of permanent human colon cell lines and tumor and corresponding healthy tissue samples from patients with CRC. Results The relative abundance of SMAD4–201 in analyzed cell lines varied between 16 and 47%. A similar relative abundance of SMAD4–201 transcript was found in the majority of analyzed human tumor tissue samples, and it was averagely 20% lower in non-malignant in comparison to malignant tissue samples (p = 0.001). Transcript SMAD4–202 was not detectable in any of the analyzed samples, so the observed fluctuations in the composition of SMAD4 transcripts can be attributed to transcripts other than SMAD4–201 and SMAD4–202. Conclusion The expression profile of SMAD4–201 in human tumor and non-tumor tissue samples may indicate the translational potential of this molecule in CRC, but further research is needed to clarify its usability as a potential biomarker for early diagnosis.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 482
Li-Zhi Cheng ◽  
Dan-Ling Huang ◽  
Min Liao ◽  
Ke-Ming Li ◽  
Zhao-Qiu Wu ◽  

Moreollic acid, a caged-tetraprenylated xanthone from Gamboge, has been indicated as a potent antitumor molecule. In the present study, a series of moreollic acid derivatives with novel structures were designed and synthesized, and their antitumor activities were determined in multifarious cell lines. The preliminary screening results showed that all synthesized compounds selectively inhibited human colon cancer cell proliferation. TH12-10, with an IC50 of 0.83, 1.10, and 0.79 μM against HCT116, DLD1, and SW620, respectively, was selected for further antitumor mechanism studies. Results revealed that TH12-10 effectively inhibited cell proliferation by blocking cell-cycle progression from G1 to S. Besides, the apparent structure–activity relationships of target compounds were discussed. To summarize, a series of moreollic acid derivatives were discovered to possess satisfactory antitumor potentials. Among them, TH12-10 displays the highest antitumor activities against human colon cancer cells, in which the IC50 values in DLD1 and SW620 are lower than that of 5-fluorouracil.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 361
Alyssa D. Merting ◽  
Dakota B. Poschel ◽  
Chunwan Lu ◽  
John D. Klement ◽  
Dafeng Yang ◽  

A hallmark of human colorectal cancer is lost expression of FAS, the death receptor for FASL of cytotoxic T lymphocytes (CTLs). However, it is unknown whether restoring FAS expression alone is sufficient to suppress csolorectal-cancer development. The FAS promoter is hypermethylated and inversely correlated with FAS mRNA level in human colorectal carcinomas. Analysis of single-cell RNA-Seq datasets revealed that FAS is highly expressed in epithelial cells and immune cells but down-regulated in colon-tumor cells in human colorectal-cancer patients. Codon usage-optimized mouse and human FAS cDNA was designed, synthesized, and encapsulated into cationic lipid to formulate nanoparticle DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Overexpression of codon usage-optimized FAS in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro, suppressed colon tumor growth, and increased the survival of tumor-bearing mice in vivo. Overexpression of codon-optimized FAS-induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. DOTAP-Chol-mFAS therapy exhibited no significant liver toxicity. Our data determined that tumor-selective delivery of FAS DNA nanoparticles is sufficient for suppression of human colon tumor growth in vivo.

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 65
Marcello Casertano ◽  
Massimo Genovese ◽  
Paolo Paoli ◽  
Alice Santi ◽  
Anna Aiello ◽  

The chemical investigation of the Mediterranean ascidian Clavelina lepadiformis has led to the isolation of a new lepadin, named lepadin L, and two known metabolites belonging to the same family, lepadins A and B. The planar structure and relative configuration of the decahydroquinoline ring of lepadin L were established both by means of HR-ESIMS and by a detailed as extensive analysis of 1D and 2D NMR spectra. Moreover, microscale derivatization of the new alkaloid lepadin L was performed to assess the relative configuration of the functionalized alkyl side chain. Lepadins A, B, and L were tested for their cytotoxic activity on a panel of cancer cell lines (human melanoma [A375], human breast [MDA-MB-468], human colon adenocarcinoma [HT29], human colorectal carcinoma [HCT116], and mouse myoblast [C2C12]). Interestingly, a deeper investigation into the mechanism of action of the most cytotoxic metabolite, lepadin A, on the A375 cells has highlighted its ability to induce a strongly inhibition of cell migration, G2/M phase cell cycle arrest and a dose-dependent decrease of cell clonogenity, suggesting that it is able to impair self-renewing capacity of A375 cells.

Oncogene ◽  
2022 ◽  
Jinguan Lin ◽  
Longzheng Xia ◽  
Linda Oyang ◽  
Jiaxin Liang ◽  
Shiming Tan ◽  

AbstractCancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 358
Reem Al Monla ◽  
Zeina Dassouki ◽  
Nouha Sari-Chmayssem ◽  
Hiba Mawlawi ◽  
Hala Gali-Muhtasib

Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL−1) lower than that of alginate (690 µg/mL−1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C.

2022 ◽  
pp. 174753
Surachai Maijaroen ◽  
Sompong Klaynongsruang ◽  
Somrudee Reabroi ◽  
Arthit Chairoungdua ◽  
Sittiruk Roytrakul ◽  

Sign in / Sign up

Export Citation Format

Share Document