Abstract 3644: Blood tumor mutational burden (bTMB) from circulating tumor DNA (ctDNA) as a biomarker for both mutational status and tumor burden in non-small cell lung cancer (NSCLC)

Author(s):  
Andrew A. Davis ◽  
Carlos Galvez ◽  
Alan Pan ◽  
Nisha Mohindra ◽  
Victoria Villaflor ◽  
...  
2019 ◽  
Vol 24 (6) ◽  
pp. 820-828 ◽  
Author(s):  
Young Kwang Chae ◽  
Andrew A. Davis ◽  
Sarita Agte ◽  
Alan Pan ◽  
Nicholas I. Simon ◽  
...  

Author(s):  
Jarrod T. Smith ◽  
Aneri Balar ◽  
Dhairya A. Lakhani ◽  
Christien Kluwe ◽  
Zhiguo Zhao ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. e001904
Author(s):  
Javier Ramos-Paradas ◽  
Susana Hernández-Prieto ◽  
David Lora ◽  
Elena Sanchez ◽  
Aranzazu Rosado ◽  
...  

BackgroundTumor mutational burden (TMB) is a recently proposed predictive biomarker for immunotherapy in solid tumors, including non-small cell lung cancer (NSCLC). Available assays for TMB determination differ in horizontal coverage, gene content and algorithms, leading to discrepancies in results, impacting patient selection. A harmonization study of TMB assessment with available assays in a cohort of patients with NSCLC is urgently needed.MethodsWe evaluated the TMB assessment obtained with two marketed next generation sequencing panels: TruSight Oncology 500 (TSO500) and Oncomine Tumor Mutation Load (OTML) versus a reference assay (Foundation One, FO) in 96 NSCLC samples. Additionally, we studied the level of agreement among the three methods with respect to PD-L1 expression in tumors, checked the level of different immune infiltrates versus TMB, and performed an inter-laboratory reproducibility study. Finally, adjusted cut-off values were determined.ResultsBoth panels showed strong agreement with FO, with concordance correlation coefficients (CCC) of 0.933 (95% CI 0.908 to 0.959) for TSO500 and 0.881 (95% CI 0.840 to 0.922) for OTML. The corresponding CCCs were 0.951 (TSO500-FO) and 0.919 (OTML-FO) in tumors with <1% of cells expressing PD-L1 (PD-L1<1%; N=55), and 0.861 (TSO500-FO) and 0.722 (OTML-FO) in tumors with PD-L1≥1% (N=41). Inter-laboratory reproducibility analyses showed higher reproducibility with TSO500. No significant differences were found in terms of immune infiltration versus TMB. Adjusted cut-off values corresponding to 10 muts/Mb with FO needed to be lowered to 7.847 muts/Mb (TSO500) and 8.380 muts/Mb (OTML) to ensure a sensitivity >88%. With these cut-offs, the positive predictive value was 78.57% (95% CI 67.82 to 89.32) and the negative predictive value was 87.50% (95% CI 77.25 to 97.75) for TSO500, while for OTML they were 73.33% (95% CI 62.14 to 84.52) and 86.11% (95% CI 74.81 to 97.41), respectively.ConclusionsBoth panels exhibited robust analytical performances for TMB assessment, with stronger concordances in patients with negative PD-L1 expression. TSO500 showed a higher inter-laboratory reproducibility. The cut-offs for each assay were lowered to optimal overlap with FO.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongliang Zhang ◽  
Yu Yao ◽  
Yaping Xu ◽  
Lifeng Li ◽  
Yan Gong ◽  
...  

AbstractCirculating tumor DNA (ctDNA) provides a noninvasive approach to elucidate a patient’s genomic landscape and actionable information. Here, we design a ctDNA-based study of over 10,000 pan-cancer Chinese patients. Using parallel sequencing between plasma and white blood cells, 14% of plasma cell-free DNA samples contain clonal hematopoiesis (CH) variants, for which detectability increases with age. After eliminating CH variants, ctDNA is detected in 73.5% of plasma samples, with small cell lung cancer (91.1%) and prostate cancer (87.9%) showing the highest detectability. The landscape of putative driver genes revealed by ctDNA profiling is similar to that in a tissue-based database (R2 = 0.87, p < 0.001) but also shows some discrepancies, such as higher EGFR (44.8% versus 25.2%) and lower KRAS (6.8% versus 27.2%) frequencies in non-small cell lung cancer, and a higher TP53 frequency in hepatocellular carcinoma (53.1% versus 28.6%). Up to 41.2% of plasma samples harbor drug-sensitive alterations. These findings may be helpful for identifying therapeutic targets and combined treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document