Abstract B30: Three-dimensional organoid model for acquired drug resistance in non-small cell lung cancer

Author(s):  
Navika D. Shukla ◽  
Ameen A. Salahudeen ◽  
Sukhmani K. Padda ◽  
Joel W. Neal ◽  
Heather A. Wakelee ◽  
...  
2020 ◽  
Author(s):  
Nicole M Hermance ◽  
Elizabeth A Crowley ◽  
Conor P Herlihy ◽  
Amity L Manning

AbstractChromosome instability, or CIN, defined as a high frequency of whole chromosome gains and losses, is prevalent in many solid tumors. CIN has been shown to promote intra-tumor heterogeneity and correspond with tumor aggressiveness, drug resistance and tumor relapse. However, whether CIN promotes the acquisition of genomic changes responsible for drug resistance remain unclear. Here we assess the role of CIN in the acquisition of drug resistance in non small cell lung cancer. We show that impairment of centromeric cohesion underlies the generation of whole chromosome segregation errors and CIN in non small cell lung cancer cells. Further, we demonstrate that centromere-specific enhancement of chromosome cohesion strongly suppresses CIN and reduces intra-tumor heterogeneity. We demonstrate that suppression of CIN has no impact on NSCLC cell proliferation in vitro nor in tumor initiation in mouse xenograft models. However, suppression of CIN alters the timing and molecular mechanism that drive acquired drug resistance. These findings suggest mechanisms to suppress CIN may serve as effective co-therapies to limit tumor evolution and sustain drug response.


2015 ◽  
Vol 75 (22) ◽  
pp. 4937-4948 ◽  
Author(s):  
Alexandra B. Lantermann ◽  
Dongshu Chen ◽  
Kaitlin McCutcheon ◽  
Greg Hoffman ◽  
Elizabeth Frias ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Iwona Ziółkowska-Suchanek

Hypoxia is the most common microenvironment feature of lung cancer tumors, which affects cancer progression, metastasis and metabolism. Oxygen induces both proteomic and genomic changes within tumor cells, which cause many alternations in the tumor microenvironment (TME). This review defines current knowledge in the field of tumor hypoxia in non-small cell lung cancer (NSCLC), including biology, biomarkers, in vitro and in vivo studies and also hypoxia imaging and detection. While classic two-dimensional (2D) in vitro research models reveal some hypoxia dependent manifestations, three-dimensional (3D) cell culture models more accurately replicate the hypoxic TME. In this study, a systematic review of the current NSCLC 3D models that have been able to mimic the hypoxic TME is presented. The multicellular tumor spheroid, organoids, scaffolds, microfluidic devices and 3D bioprinting currently being utilized in NSCLC hypoxia studies are reviewed. Additionally, the utilization of 3D in vitro models for exploring biological and therapeutic parameters in the future is described.


2021 ◽  
Vol 567 ◽  
pp. 79-85
Author(s):  
Koujun Zhu ◽  
Jun Zhu ◽  
Jichun Geng ◽  
Yongjian Zhang ◽  
Yan Qin ◽  
...  

2018 ◽  
Vol 51 (6) ◽  
pp. 2509-2522 ◽  
Author(s):  
Shousen Hu ◽  
Yongliang Yuan ◽  
Zhizhen Song ◽  
Dan Yan ◽  
Xiangzhen Kong

Background/Aims: Drug resistance remains a main obstacle to the treatment of non- small cell lung cancer (NSCLC). The aim of this study was to identify the expression profiles of microRNAs (miRNAs) in drug-resistant NSCLC cell lines. Methods: The expression profiles of miRNAs in drug-resistant NSCLC cell lines were examined using miRNA sequencing, and the common dysregulated miRNAs in these cell lines were identified and analyzed by bioinformatics methods. Results: A total of 29 upregulated miRNAs and 36 downregulated miRNAs were found in the drug-resistant NSCLC cell lines, of which 26 upregulated and 36 downregulated miRNAs were found to be involved in the Ras signaling pathway. The expression levels, survival analysis, and receiver operating characteristic curve of the dysregulated miRNAs based on The Cancer Genome Atlas database for lung adenocarcinoma showed that hsa-mir-192, hsa-mir-1293, hsa-mir-194, hsa-mir-561, hsa-mir-205, hsa-mir-30a, and hsa-mir-30c were related to lung cancer, whereas only hsa-mir-1293 and hsa-mir-561 were not involved in drug resistance. Conclusion: The results of this study may provide novel biomarkers for drug resistance in NSCLC and potential therapies for overcoming drug resistance, and may also reveal the potential mechanisms underlying drug resistance in this disease.


2018 ◽  
Vol 51 (2) ◽  
pp. 961-978 ◽  
Author(s):  
Lin Ye ◽  
Tingxiu Xiang ◽  
Jing Zhu ◽  
Dairong Li ◽  
Qin Shao ◽  
...  

Background/Aims: Interferon consensus sequence-binding protein 8 (IRF8) belongs to a family of interferon (IFN) regulatory factors that modulates various important physiological processes including carcinogenesis. As reported by others and our group, IRF8 expression is silenced by DNA methylation in both human solid tumors and hematological malignancies. However, the role of IRF8 in lung carcinoma remains elusive. In this study, we determined IRF8 epigenetic regulation, biological functions, and the signaling pathway involved in non-small cell lung cancer (NSCLC). Methods: IRF8 expression were determined by Q- PCR. MSP and A+T determined promotor methylation. MTS, clonogenic, Transwell assay, Flow cytometry, three-dimensional culture and AO/EB stain verified cell function. In vivo tumorigenesis examed the in vivo effects. By Chip-QPCR, RT-PCR, Western blot and Immunofluorescence staining, the mechanisms were studied. Results: IRF8 was significantly downregulated in lung tumor tissues compared with adjacent non-cancerous tissues. Furthermore, methylation-specific PCR analyses revealed that IRF8 methylation in NSCLC was a common event, and demethylation reagent treatment proved that downregulation of IRF8 was due to its promoter CpG hypermethylation. Clinical data showed that the IRF8 methylation was associated with tumor stage, lymph node metastasis status, patient outcome, and tumor histology. Exogenous expression of IRF8 in the silenced or downregulated lung cancer cell lines A549 and H1299 at least partially restored the sensitivity of lung cancer cells to apoptosis, and arrested cells at the G0/G1 phase. Cell viability, clonogenicity, and cell migration and invasive abilities were strongly inhibited by restored expression of IRF8. A three-dimensional culture system demonstrated that IRF8 changed the cells to a more spherical phenotype. Moreover, ectopic expression of IRF8 enhanced NSCLC chemosensitivity to cisplatin. Furthermore, as verified by Chip-qPCR, immunofluorescence staining, and western blotting, IRF8 bound to the T-cell factor/lymphoid enhancer factor (TCF /LEF) promoter, thus repressing β-catenin nuclear translocation and its activation. IRF8 significantly disrupted the effects of Wnt agonist, bml284, further suggesting its involvement in the Wnt/β-catenin pathway. Conclusion: IRF8 acted as a tumor suppressor gene through the transcriptional repression of β-catenin-TCF/LEF in NSCLC. IRF8 methylation may serve as a potential biomarker in NSCLC prognosis.


Sign in / Sign up

Export Citation Format

Share Document