Abstract A011: First-in-man clinical trial of intratumoral injection of Clostridiumnovyi-NT spores in patients with treatment-refractory advanced solid tumors: Safety, activity, and immune responses

Author(s):  
Filip Janku ◽  
Mrinal Gounder ◽  
Abdul Mohammad Pezeshki ◽  
Ravi Murthy ◽  
Andrea Wang-Gillam ◽  
...  
2020 ◽  
Vol 27 (1) ◽  
pp. 96-106
Author(s):  
Filip Janku ◽  
Halle Huihong Zhang ◽  
Abdulmohammad Pezeshki ◽  
Sanjay Goel ◽  
Ravi Murthy ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2613-2613
Author(s):  
Maura L. Gillison ◽  
Mark M. Awad ◽  
Przemyslaw Twardowski ◽  
Ammar Sukari ◽  
Melissa Lynne Johnson ◽  
...  

2613 Background: GEN-009 is an adjuvanted personalized cancer vaccine containing up to 20 neoantigens selected by ATLAS, an ex vivo bioassay screening autologous T cells for immune responses against both neoantigens as well as Inhibigens. Inhibigen-specific T cells suppress immunity and have been shown to accelerate tumor progression in mice and are avoided in GEN-009. In cohort A, all patients immunized in the adjuvant setting with GEN-009 monotherapy developed immune responses. Nearly all (99%) of selected peptides were immunogenic: ex vivo CD4+ and CD8+ fluorospot responses specific for 51% and 41% of immunized peptides, respectively. Seven of 8 patients continue without progression with a median follow up of 18 months. Methods: GEN-009 is being evaluated in patients (pts) with advanced cancer who received standard-of-care (SOC) PD-1 inhibitor as monotherapy or in combination therapy during vaccine manufacturing. Five vaccine doses were administered over 24 weeks in combination with a PD-1 CPI. Patients who progressed prior to vaccination received alternative salvage therapy followed by GEN-009 in combination. Peripheral T cell responses were measured by fluorospot assays in ex vivo and in vitro stimulation. Results: 15 pts received GEN-009 in combination with a PD-1 inhibitor; 1 patient received GEN-009 monotherapy. Median number of neoantigens per vaccine was 14 (5-18). GEN-009-related adverse events were limited to vaccine injection site reactions and mild myalgias or fatigue. Longitudinal evaluation of ex vivo T cell responses revealed that sequential vaccination with GEN-009 had an overall additive effect on the robustness of IFNγ secretion and responses were persistent for at least 6 months in some patients. Epitope spread was detected in CPI sensitive patients, but not in CPI refractory patients receiving salvage therapy. Three patients who responded to PD-1 inhibition followed by disease stabilization then demonstrated further reduction after GEN-009 vaccination that could represent vaccine effect. Eight of 9 CPI responsive patients are progression-free from 3 to 10 months after first vaccine dose. Four of 7 CPI refractory patients have experienced unexpected prolonged stable disease after vaccination of up to 8 months after vaccination. 2 of 2 patients with available samples lost all evidence of circulating tumor DNA including non-targeted neoantigens. Conclusions: Vaccination with GEN-009 in combination with anti-PD-1 CPI in patients with advanced solid tumors shows little additive toxicity. Preliminary data demonstrate induction of broad neoantigen-specific immune responses and epitope spreading in the presence of PD-1 CPI. Broad immunity against tumor specific targets and encouraging patient outcomes support further study. Clinical trial information: NCT03633110.


Author(s):  
James J. Harding ◽  
Victor Moreno ◽  
Yung-Jue Bang ◽  
Min Hee Hong ◽  
Amita Patnaik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document