Regulation of the Activity of 27 pS Nonselective Cation Channels in Excised Membrane Patches from Rat Brown-Fat Cells

1998 ◽  
Vol 8 (5) ◽  
pp. 231-245 ◽  
Author(s):  
Ari Koivisto ◽  
Andreas Klinge ◽  
Jan Nedergaard ◽  
Detlef Siemen
2000 ◽  
Vol 279 (5) ◽  
pp. E963-E977 ◽  
Author(s):  
Ari Koivisto ◽  
Detlef Siemen ◽  
Jan Nedergaard

The nature of the sustained norepinephrine-induced depolarization in brown fat cells was examined by patch-clamp techniques. Norepinephrine (NE) stimulation led to a whole cell current response consisting of two phases: a first inward current, lasting for only 1 min, and a sustained inward current, lasting as long as the adrenergic stimulation was maintained. The nature of the sustained current was here investigated. It could be induced by the α1-agonist cirazoline but not by the β3-agonist CGP-12177A. Reduction of extracellular Cl− concentration had no effect, but omission of extracellular Ca2+ or Na+ totally eliminated it. When unstimulated cells were studied in the cell-attached mode, some activity of ≈30 pS nonselective cation channels was observed. NE perfusion led to a 10-fold increase in their open probability (from ≈0.002 to ≈0.017), which persisted as long as the perfusion was maintained. The activation was much stronger with the α1-agonist phenylephrine than with the β3-agonist CGP-12177A, and with the Ca2+ionophore A-23187 than with the adenylyl cyclase activator forskolin. We conclude that the sustained inward current was due to activation of ≈30 pS nonselective cation channels via α1-adrenergic receptors and that the effect may be mediated via an increase in intracellular free Ca2+ concentration.


1993 ◽  
pp. 201-211 ◽  
Author(s):  
Ari Koivisto ◽  
Elisabeth Dotzler ◽  
Ulrich Ruß ◽  
Jan Nedergaard ◽  
Detlef Siemen

1967 ◽  
Vol 242 (8) ◽  
pp. 1887-1894 ◽  
Author(s):  
John N. Fain ◽  
Nora Reed ◽  
Richard Saperstein
Keyword(s):  

Lipids ◽  
1970 ◽  
Vol 5 (2) ◽  
pp. 204-209 ◽  
Author(s):  
Olov Lindberg ◽  
Stanley B. Prusiner ◽  
Barbara Cannon ◽  
Te May Ching ◽  
R. H. Eisenhardt

2005 ◽  
Vol 289 (1) ◽  
pp. L5-L13 ◽  
Author(s):  
Letitia Weigand ◽  
Joshua Foxson ◽  
Jian Wang ◽  
Larissa A. Shimoda ◽  
J. T. Sylvester

Previous studies indicated that acute hypoxia increased intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, and capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCC) in smooth muscle cells from distal pulmonary arteries (PASMC), which are thought to be a major locus of hypoxic pulmonary vasoconstriction (HPV). Moreover, these effects were blocked by Ca2+-free conditions and antagonists of SOCC and nonselective cation channels (NSCC). To test the hypothesis that in vivo HPV requires CCE, we measured the effects of SOCC/NSCC antagonists (SKF-96365, NiCl2, and LaCl3) on pulmonary arterial pressor responses to 2% O2 and high-KCl concentrations in isolated rat lungs. At concentrations that blocked CCE and [Ca2+]i responses to hypoxia in PASMC, SKF-96365 and NiCl2 prevented and reversed HPV but did not alter pressor responses to KCl. At 10 μM, LaCl3 had similar effects, but higher concentrations (30 and 100 μM) caused vasoconstriction during normoxia and potentiated HPV, indicating actions other than SOCC blockade. Ca2+-free perfusate and the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine were potent inhibitors of pressor responses to both hypoxia and KCl. We conclude that HPV required influx of Ca2+ through both SOCC and VOCC. This dual requirement and virtual abolition of HPV by either SOCC or VOCC antagonists suggests that neither channel provided enough Ca2+ on its own to trigger PASMC contraction and/or that during hypoxia, SOCC-dependent depolarization caused secondary activation of VOCC.


1994 ◽  
Vol 267 (2) ◽  
pp. C349-C356 ◽  
Author(s):  
S. C. Lee ◽  
J. S. Hamilton ◽  
T. Trammell ◽  
B. A. Horwitz ◽  
P. A. Pappone

The activity of the uncoupling protein in brown fat mitochondria is enhanced at alkaline pH, leading to the hypothesis that changes in intracellular pH (pHi) may modulate the thermogenic response to sympathetic stimulation. We employed ratio imaging of the fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein to measure pHi in acutely isolated single brown fat cells from hamster and neonatal rat and in cultured rat cells. Basal pHi averaged approximately 7.2 in HCO3- media and 0.1-0.15 pH units lower in nominally HCO3(-)-free media in all cell types. In both HCO3- and HCO3(-)-free media, stimulation with norepinephrine (NE) typically caused an alkalinization of approximately 0.05-0.1 pH units, which was followed by a smaller net acidification occurring primarily after NE was removed. Alkalinization seemed to be mediated predominantly by alpha-adrenergic stimulation, while acidification most often followed beta-adrenergic activation. Similar pHi changes were elicited by NE in rat and hamster cells, but responses were more frequent in hamster cells. Assays of recovery from ammonium prepulse-induced acid loads indicated that rat and hamster cells have both Na(+)-H+ and Na(+)- and HCO3(-)-dependent regulatory systems, while hamster cells have, in addition, a Na(+)-independent recovery mechanism activated at acid pHi. We conclude that alpha-adrenergic alkalinization of brown fat may contribute to the control of thermogenesis.


2012 ◽  
pp. 267-275 ◽  
Author(s):  
M. KUČKA ◽  
K. KRETSCHMANNOVÁ ◽  
S. S. STOJILKOVIC ◽  
H. ZEMKOVÁ ◽  
M. TOMIĆ

All secretory anterior pituitary cells fire action potentials spontaneously and exhibit a high resting cation conductance, but the channels involved in the background permeability have not been identified. In cultured lactotrophs and immortalized GH3 cells, replacement of extracellular Na+ with large organic cations, but not blockade of voltage-gated Na+ influx, led to an instantaneous hyperpolarization of cell membranes that was associated with a cessation of spontaneous firing. When cells were clamped at –50 mV, which was close to the resting membrane potential in these cells, replacement of bath Na+ with organic cations resulted in an outward-like current, reflecting an inhibition of the inward holding membrane current and indicating loss of a background-depolarizing conductance. Quantitative RT-PCR analysis revealed the high expression of mRNA transcripts for TRPC1 and much lower expression of TRPC6 in both lactotrophs and GH3 cells. Very low expression of TRPC3, TRPC4, and TRPC5 mRNA transcripts were also present in pituitary but not GH3 cells. 2-APB and SKF-96365, relatively selective blockers of TRPC channels, inhibited electrical activity, Ca2+ influx and prolactin release in a concentration-dependent manner. Gd3+, a common Ca2+ channel blocker, and flufenamic acid, an inhibitor of non-selective cation channels, also inhibited electrical activity, Ca2+ influx and prolactin release. These results indicate that nonselective cation channels, presumably belonging to the TRPC family, contribute to the background depolarizing conductance and firing of action potentials with consequent contribution to Ca2+ influx and hormone release in lactotrophs and GH3 cells.


1983 ◽  
Vol 244 (3) ◽  
pp. C297-C302 ◽  
Author(s):  
S. S. Sheu ◽  
M. P. Blaustein

The influence of internal and external Ca2+ on membrane potential and 22Na influx were tested in internally perfused giant barnacle muscle fibers. The fibers depolarized by about 2-3 mV, and Na+ influx increased when external Ca2+ was removed. These effects were inhibited and reversed by adding 2 mM La3+ externally but not by tetrodotoxin (TTX). Ca2+ channel blockers did not prevent the depolarization. Increasing internal free Ca2+ ([Ca2+]i) from 10(-7) to 10(-5) M also stimulated Na+ influx and depolarized the fibers by a few millivolts. Neither external La3+ nor TTX prevented the effects of raising [Ca2+]i; however, internal tetrabutylammonium ions depolarized the fibers and attenuated the internal Ca2+-dependent effects. These data are consistent with the idea that removal of external Ca2+ activates a La3+-sensitive channel that is permeable to Na+; raising [Ca2+]i activates a La2+-insensitive, Na+-permeable channel that may be similar to the internal Ca2+-activated nonselective cation channels observed in cardiac muscle. The results demonstrate that all Na+ (and Ca2+) fluxes that do not contribute to Na-Ca exchange must be carefully identified before the exchange stoichiometry can be determined from Na+ and Ca2+ flux measurements.


Sign in / Sign up

Export Citation Format

Share Document