hypoxic pulmonary vasoconstriction
Recently Published Documents


TOTAL DOCUMENTS

996
(FIVE YEARS 57)

H-INDEX

70
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1629
Author(s):  
Divya Guntur ◽  
Horst Olschewski ◽  
Péter Enyedi ◽  
Réka Csáki ◽  
Andrea Olschewski ◽  
...  

Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell′s membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits. They are of vital significance due to their very high unitary conductance and hence their ability to rapidly cause extreme changes in the membrane potential. The pathophysiology of lung diseases in general and pulmonary hypertension, in particular, show the implication of either decreased expression and partial inactivation of BKCa channel and its subunits or mutations in the genes encoding different subunits of the channel. Signaling molecules, circulating humoral molecules, vasorelaxant agents, etc., have an influence on the open probability of the channel in pulmonary arterial vascular cells. BKCa channel is a possible therapeutic target, aimed to cause vasodilation in constricted or chronically stiffened vessels, as shown in various animal models. This review is a comprehensive collation of studies on BKCa channels in the pulmonary circulation under hypoxia (hypoxic pulmonary vasoconstriction; HPV), lung pathology, and fetal to neonatal transition, emphasising pharmacological interventions as viable therapeutic options.


Author(s):  
Pritesh P. Jain ◽  
Ning Lai ◽  
Mingmei Xiong ◽  
Jiyuan Chen ◽  
Aleksandra Babicheva ◽  
...  

Idiopathic pulmonary arterial hypertension (PAH) is a fatal and progressive disease. Pulmonary vasoconstriction due to pulmonary arterial smooth muscle cell (PASMC) contraction and pulmonary arterial remodeling due to PASMC proliferation are causes for increased pulmonary vascular resistance in patients with PAH. We and others observed upregulation of TRPC6 channels in PASMC from patients with PAH. An increase in cytosolic Ca2+ concentration ([Ca2+]cyt) in PASMC triggers PASMC contraction and vasoconstriction, while Ca2+-dependent activation of PI3K/AKT/mTOR pathway is pivotal for cell proliferation and gene expression. Despite evidence supporting a pathological role of TRPC6, no selective and orally bioavailable TRPC6 blocker has yet been developed and tested for treatment of PAH. We sought to investigate whether block of receptor-operated Ca2+ channels or TRPC6 can reverse established PH in mice via inhibiting Ca2+-dependent activation of AKT/mTOR signaling. Here we report that intrapulmonary application of 2-aminoethyl diphenyl borniate (2-APB), a non-selective blocker of cation channels or BI-749237, a selective blocker of TRPC6, significantly and reversibly inhibited acute hypoxic pulmonary vasoconstriction. Intraperitoneal injection of 2-APB significantly attenuated the development of PH and partially reversed established PH. Oral gavage of the selective TRPC6 blocker BI-749237 reversed established PH by 50% via regression of pulmonary vascular remodeling. Furthermore, 2-APB and BI-749237 both inhibited PDGF- and serum-mediated phosphorylation of AKT and mTOR in PASMC. These results indicates that the receptor-operated and mechanosensitive TRPC6 channel is a good target for developing novel treatment for PAH. BI-749237, a selective TRPC6 blocker, is potentially a novel and effective drug for treating PAH.


2021 ◽  
Vol 321 (4) ◽  
pp. H738-H747
Author(s):  
Mike Stembridge ◽  
Ryan L. Hoiland ◽  
Alexandra M. Williams ◽  
Connor A. Howe ◽  
Joseph Donnelly ◽  
...  

Red blood cell concentration influences the pulmonary vasculature via direct frictional force and vasoactive signaling, but whether the magnitude of the response is modified with duration of exposure is not known. By assessing the pulmonary vascular response to hemodilution in acute normobaric and prolonged hypobaric hypoxia in lowlanders and lifelong hypobaric hypoxemia in Andean natives, we demonstrated that a reduction in red cell concentration augments the vasoconstrictive effects of hypoxia in lowlanders. In high-altitude natives, hemodilution lowered pulmonary vascular resistance, but a compensatory increase in cardiac output following hemodilution rendered PASP unchanged.


2021 ◽  
Vol 30 (161) ◽  
pp. 210059
Author(s):  
Mareike Gierhardt ◽  
Oleg Pak ◽  
Dieter Walmrath ◽  
Werner Seeger ◽  
Friedrich Grimminger ◽  
...  

Acute respiratory distress syndrome (ARDS) is a serious complication of severe systemic or local pulmonary inflammation, such as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ARDS is characterised by diffuse alveolar damage that leads to protein-rich pulmonary oedema, local alveolar hypoventilation and atelectasis. Inadequate perfusion of these areas is the main cause of hypoxaemia in ARDS. High perfusion in relation to ventilation (V/Q<1) and shunting (V/Q=0) is not only caused by impaired hypoxic pulmonary vasoconstriction but also redistribution of perfusion from obstructed lung vessels. Rebalancing the pulmonary vascular tone is a therapeutic challenge. Previous clinical trials on inhaled vasodilators (nitric oxide and prostacyclin) to enhance perfusion to high V/Q areas showed beneficial effects on hypoxaemia but not on mortality. However, specific patient populations with pulmonary hypertension may profit from treatment with inhaled vasodilators. Novel treatment targets to decrease perfusion in low V/Q areas include epoxyeicosatrienoic acids and specific leukotriene receptors. Still, lung protective ventilation and prone positioning are the best available standard of care. This review focuses on disturbed perfusion in ARDS and aims to provide basic scientists and clinicians with an overview of the vascular alterations and mechanisms of V/Q mismatch, current therapeutic strategies, and experimental approaches.


Author(s):  
David Walter Johnson ◽  
Tuhin K. Roy ◽  
Timothy W. Secomb

Hypoxic pulmonary vasoconstriction (HPV) plays an essential role in distributing blood in the lung to enhance ventilation-perfusion matching and blood oxygenation. In this study, a theoretical model of the pulmonary vasculature is used to predict the effects of vasoconstriction over specified ranges of vessel diameters on pulmonary vascular resistance (PVR). The model is used to evaluate the ability of hypothesized mechanisms of HPV to account for observed levels of PVR elevation during hypoxia. The vascular structure from pulmonary arteries to capillaries is represented using scaling laws. Vessel segments are modeled as resistive elements and blood flow rates are computed from physical principles. Direct vascular responses to intravascular oxygen levels have been proposed as a mechanism of HPV. In the lung, significant changes in oxygen level occur only in vessels less than 60 μm in diameter. The model shows that observed levels of hypoxic vasoconstriction in these vessels alone cannot account for the elevation of PVR associated with HPV. However, the elevation in PVR associated with HPV can be accounted for if larger upstream vessels also constrict. These results imply that upstream signaling by conducted responses to engage constriction of arterioles plays an essential role in the elevation of PVR during HPV.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patricia Siques ◽  
Eduardo Pena ◽  
Julio Brito ◽  
Samia El Alam

High-altitude exposure results in hypobaric hypoxia, which affects organisms by activating several mechanisms at the physiological, cellular, and molecular levels and triggering the development of several pathologies. One such pathology is high-altitude pulmonary hypertension (HAPH), which is initiated through hypoxic pulmonary vasoconstriction to distribute blood to more adequately ventilated areas of the lungs. Importantly, all layers of the pulmonary artery (adventitia, smooth muscle, and endothelium) contribute to or are involved in the development of HAPH. However, the principal action sites of HAPH are pulmonary artery smooth muscle cells (PASMCs), which interact with several extracellular and intracellular molecules and participate in mechanisms leading to proliferation, apoptosis, and fibrosis. This review summarizes the alterations in molecular pathways related to oxidative stress, inflammation, kinase activation, and other processes that occur in PASMCs during pulmonary hypertension under hypobaric hypoxia and proposes updates to pharmacological treatments to mitigate the pathological changes in PASMCs under such conditions. In general, PASMCs exposed to hypobaric hypoxia undergo oxidative stress mediated by Nox4, inflammation mediated by increases in interleukin-6 levels and inflammatory cell infiltration, and activation of the protein kinase ERK1/2, which lead to the proliferation of PASMCs and contribute to the development of hypobaric hypoxia-induced pulmonary hypertension.


2021 ◽  
pp. 64-66
Author(s):  
Md Shoeb Alam ◽  
Rahul Ranjan ◽  
V N Jha

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is a major public health problem. COR PULMONALE describes the enlargement and failure of the right ventricle of the heart as a response to increased vascular resistance or increased pulmonary artery pressure. Hypoxic pulmonary vasoconstriction, hypercapnia, respiratory acidosis and pulmonary vascular remodeling in COPD can cause an increase in right ventricular (RV) after load, which in turn, results in RVfailure leading to COR PULMONALE AIM:The purpose of the study is to compare the ABG pattern in patients of COPD with or without COR PULMONALE. MATERIALS AND METHODS: This prospective observational study was conducted in the Department of Medicine of DMCH, Laheriasarai, Bihar. The study was conducted with duration of 2 years. Atotal of 100 patients admitted as a case of COPD with or without COR PULMONALE. The patients were put into two subgroups, COPD with and without COR PULMONALE. RESULT: The mean duration was 10.17 years and 9.20 years respectively in patients with and without COR PULMONALE. There was no statistically signicant difference regarding mean duration of disease (p value =0.304). Mean CAT score was 16.59 ± 6.26 and mean mMRC was 3.19± 0.45 in COPD patients with COR PULMONALE group. Mean CAT score was 14.06 ± 4.46 and mean mMRC was 3.10 ± 0.44 in COPD patients without COR PULMONALE group. We found no signicant difference among these variables between groups. Although COR PULMONALE patients had higher CATscore and mMRC score, the difference was not signicant (p value = >0.05). CONCLUSION:ABG ANALYSIS should be recommended for all patients of COPD with or without COR PULMONALE to assess the degree of hypoxemia, hypercapnea, respiratory acidosis and also, we can identify individuals who need more close monitoring and intensive treatment.


Sign in / Sign up

Export Citation Format

Share Document