The Role of the Subplate Zone in the Structural Plasticity of the Developing Human Cerebral Cortex

2002 ◽  
Vol 1 (4) ◽  
pp. 145-153 ◽  
Author(s):  
Ivica Kostović ◽  
Miloš Judaš
2016 ◽  
Author(s):  
Alexandros Goulas ◽  
René Werner ◽  
Sarah F Beul ◽  
Dennis Säring ◽  
Martijn van den Heuvel ◽  
...  

AbstractUnderstanding the wiring diagram of the human cerebral cortex is a fundamental challenge in neuroscience. Elemental aspects of its organization remain elusive. Here we examine which structural traits of cortical regions, particularly their cytoarchitecture and thickness, relate to the existence and strength of inter-regional connections. We use the architecture data from the classic work of von Economo and Koskinas and state-of-the-art diffusion-based connectivity data from the Human Connectome Project. Our results reveal a prominent role of the cytoarchitectonic similarity of supragranular layers for predicting the existence and strength of connections. In contrast, cortical thickness similarity was not related to the existence or strength of connections. These results are in line with findings for non-human mammalian cerebral cortices, suggesting overarching wiring principles of the mammalian cerebral cortex. The results invite hypotheses about evolutionary conserved neurobiological mechanisms that give rise to the relation of cytoarchitecture and connectivity in the human cerebral cortex.


1989 ◽  
Vol 4 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Ivica Kostović ◽  
Nikola Lukinović ◽  
Miloš Judaš ◽  
Nenad Bogdanović ◽  
Ladislav Mrzljak ◽  
...  

2011 ◽  
Vol 88 (5) ◽  
pp. 523-535 ◽  
Author(s):  
Mehmet Bakircioglu ◽  
Ofélia P. Carvalho ◽  
Maryam Khurshid ◽  
James J. Cox ◽  
Beyhan Tuysuz ◽  
...  

2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
C Helmchen ◽  
J Klinkenstein ◽  
T Sander ◽  
J Gliemroth ◽  
B Machner ◽  
...  

2020 ◽  
Vol 75 (3) ◽  
pp. 226-233
Author(s):  
Svetlana P. Sergeeva ◽  
Aleksey V. Lyundup ◽  
Valery V. Beregovykh ◽  
Petr F. Litvitskiy ◽  
Aleksey A. Savin ◽  
...  

Background. The search for protein (these include c-fos, ERK1/2, MAP2, NOTCH1) expression that provide neuroplasticity mechanisms of the cerebral cortex after ischemic stroke (IS) patterns is an urgent task. Aims to reveal c-fos, ERK1/2, MAP2, NOTCH1 proteins expression patterns in human cerebral cortex neurons after IS. Materials and methods. We studied 9 left middle cerebral artery (LMCA) IS patients cerebral cortex samples from 3 zones: 1 the zone adjacent to the necrotic tissue focus; 2 zone remote from the previous one by 47 cm; 3 zone of the contralateral hemisphere, symmetric to the IS focus. Control samples were obtained from 3 accident died people. Identification of targeted proteins NSE, c-fos, ERK1/2, MAP2, NOTCH1 was performed by indirect immunoperoxidase immunohistochemical method. Results. Moving away from the ischemic focus, there is an increase in the density of neurons and a decrease in the damaged neurons proportion, the largest share of c-fos protein positive neurons in zone 2, NOTCH1 positive neurons in zone 1, smaller fractions of ERK1/2 and MAP2 positive neurons compared to the control only in samples of zone 1. Conclusions. With the IS development, the contralateral hemisphere is intact tissue increased activation zone, while the zones 1 and 2 have pathological activation signs. In zone 1 of the range, the adaptive response of the tissue decreases, and in zone 2 it expands. Therefore, a key target for therapeutic intervention is zone 2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document