Cervical Lateral Mass Advances

Author(s):  
P.V. Mummaneni ◽  
V.C. Traynelis ◽  
R.C. Sasso
Keyword(s):  
2021 ◽  
Author(s):  
William W Wroe ◽  
Bradley Budde ◽  
Joseph C Hsieh

Abstract BACKGROUND AND IMPORTANCE Fractures of C2 are typically managed nonoperatively with good rates of healing. Management decisions are complicated, however, when there are additional fractures in the axis possibly leading to increased instability. Additionally, the techniques used for treating these unstable axis fractures can have either significant complications or permanent loss of range of motion. Here, we present a novel technique for the reduction and stabilization of complex C2 body fracture. CLINICAL PRESENTATION A 34-yr-old woman with a complex C2 body fracture, which included a right pars and left lateral mass fracture, presented after a water slide accident. It was felt that this fracture was both unstable and would not heal in an anatomically acceptable way so an open surgical reduction was needed. After consideration of more traditional fusion and osteosynthesis techniques, we chose to perform a C1-C2 internal stabilization with C1 sublaminar and C2 spinous process wiring. The patient was then instructed to wear a Miami J collar for 3 mo. CONCLUSION The outcome was favorable with good approximation and healing with preserved range of motion.


2011 ◽  
Vol 14 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Kalil G. Abdullah ◽  
Amy S. Nowacki ◽  
Michael P. Steinmetz ◽  
Jeffrey C. Wang ◽  
Thomas E. Mroz

Object The C-7 lateral mass has been considered difficult to fit with instrumentation because of its unique anatomy. Of the methods that exist for placing lateral mass screws, none particularly accommodates this anatomical variation. The authors have related 12 distinct morphological measures of the C-7 lateral mass to the ability to place a lateral mass screw using the Magerl, Roy-Camille, and a modified Roy-Camille method. Methods Using CT scans, the authors performed virtual screw placement of lateral mass screws at the C-7 level in 25 male and 25 female patients. Complications recorded included foraminal and articular process violations, inability to achieve bony purchase, and inability to place a screw longer than 6 mm. Violations were monitored in the coronal, axial, and sagittal planes. The Roy-Camille technique was applied starting directly in the middle of the lateral mass, as defined by Pait's quadrants, with an axial angle of 15° lateral and a sagittal angle of 90°. The Magerl technique was performed by starting in the inferior portion of the top right square of Pait's quadrants and angling 25° laterally in the axial plane with a 45° cephalad angle in the sagittal plane. In a modified method, the starting point is similar to the Magerl technique in the top right square of Pait's quadrant and then angling 15° laterally in the axial plane. In the sagittal plane, a 90° angle is taken perpendicular to the dorsal portion of the lateral mass, as in the traditional Roy-Camille technique. Results Of all the morphological methods analyzed, only a combined measure of intrusion of the T-1 facet and the overall length of the C-7 lateral mass was statistically associated with screw placement, and only in the Roy-Camille technique. Use of the Magerl technique allowed screw placement in 28 patients; use of the Roy-Camille technique allowed placement in 24 patients; and use of the modified technique allowed placement in 46 patients. No screw placement by any method was possible in 4 patients. Conclusions There is only one distinct anatomical ratio that was shown to affect lateral mass screw placement at C-7. This ratio incorporates the overall length of the lateral mass and the amount of space occupied by the T-1 facet at C-7. Based on this virtual study, a modified Roy-Camille technique that utilizes a higher starting point may decrease the complication rate at C-7 by avoiding placement of the lateral mass screw into the T1 facet.


2003 ◽  
Vol 43 (10) ◽  
pp. 514-519 ◽  
Author(s):  
Akira MATSUMURA ◽  
Kiyoyuki YANAKA ◽  
Hiroyoshi AKUTSU ◽  
Shouzou NOGUCHI ◽  
Takeshi MORITAKE ◽  
...  

2008 ◽  
Vol 9 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Atul Goel ◽  
Nitin Dange

The authors report the case of a 35-year-old man who had polyarthritic affliction with rheumatoid disease. He presented with complaints of quadriparesis that had progressed over the course of 2 years. Investigations revealed telltale evidence of rheumatoid disease of the craniovertebral junction with retroodontoid pannus, basilar invagination, and “fixed” atlantoaxial dislocation. The patient underwent lateral mass reconstruction with distraction of the facets and impaction of a spiked metal spacer and bone graft within the joint. Investigations done in the immediate postoperative phase showed complete disappearance of retroodontoid pannus in addition to reduction of basilar invagination and atlantoaxial dislocation. He had remarkable and sustained relief from symptoms. The authors also review the pathogenesis and treatment of retroodontoid pannus.


2008 ◽  
Vol 9 (2) ◽  
pp. 200-206 ◽  
Author(s):  
Eric M. Horn ◽  
Nicholas Theodore ◽  
Neil R. Crawford ◽  
Nicholas C. Bambakidis ◽  
Volker K. H. Sonntag

Object Lateral mass screws are traditionally used to fixate the subaxial cervical spine, while pedicle screws are used in the thoracic spine. Lateral mass fixation at C-7 is challenging due to thin facets, and placing pedicle screws is difficult due to the narrow pedicles. The authors describe their clinical experience with a novel technique for transfacet screw placement for fixation at C-7. Methods A retrospective chart review was undertaken in all patients who underwent transfacet screw placement at C-7. The technique of screw insertion was the same for each patient. Polyaxial screws between 8- and 10-mm-long were used in each case and placed through the facet from a perpendicular orientation. Postoperative radiography and clinical follow-up were analyzed for aberrant screw placement or construct failure. Results Ten patients underwent C-7 transfacet screw placement between June 2006 and March 2007. In all but 1 patient screws were placed bilaterally, and the construct lengths ranged from C-3 to T-5. One patient with a unilateral screw had a prior facet fracture that precluded bilateral screw placement. There were no intraoperative complications or screw failures in these patients. After an average of 6 months of follow-up there were no hardware failures, and all patients showed excellent alignment. Conclusions The authors present the first clinical demonstration of a novel technique of posterior transfacet screw placement at C-7. These results provide evidence that this technique is safe to perform and adds stability to cervicothoracic fixation.


Sign in / Sign up

Export Citation Format

Share Document