Transfacet screw placement for posterior fixation of C-7

2008 ◽  
Vol 9 (2) ◽  
pp. 200-206 ◽  
Author(s):  
Eric M. Horn ◽  
Nicholas Theodore ◽  
Neil R. Crawford ◽  
Nicholas C. Bambakidis ◽  
Volker K. H. Sonntag

Object Lateral mass screws are traditionally used to fixate the subaxial cervical spine, while pedicle screws are used in the thoracic spine. Lateral mass fixation at C-7 is challenging due to thin facets, and placing pedicle screws is difficult due to the narrow pedicles. The authors describe their clinical experience with a novel technique for transfacet screw placement for fixation at C-7. Methods A retrospective chart review was undertaken in all patients who underwent transfacet screw placement at C-7. The technique of screw insertion was the same for each patient. Polyaxial screws between 8- and 10-mm-long were used in each case and placed through the facet from a perpendicular orientation. Postoperative radiography and clinical follow-up were analyzed for aberrant screw placement or construct failure. Results Ten patients underwent C-7 transfacet screw placement between June 2006 and March 2007. In all but 1 patient screws were placed bilaterally, and the construct lengths ranged from C-3 to T-5. One patient with a unilateral screw had a prior facet fracture that precluded bilateral screw placement. There were no intraoperative complications or screw failures in these patients. After an average of 6 months of follow-up there were no hardware failures, and all patients showed excellent alignment. Conclusions The authors present the first clinical demonstration of a novel technique of posterior transfacet screw placement at C-7. These results provide evidence that this technique is safe to perform and adds stability to cervicothoracic fixation.

2019 ◽  
Author(s):  
Bin Liu ◽  
Xiangyang Liu ◽  
Xiongjie Shen ◽  
Guoping Wang ◽  
Yixin Chen

Abstract Background : Cervical Pedicle Screw(CPS) placement is a challenging work due to high risk of neurovascular complications. Although there have been a number of different free-hand or navigation assisted techniques for CPS placement, perforations always occur during screw insertion, especially lateral perforation. The objective of this research is to describe a novel free-hand technique for subaxial CPS placement (C3–C7) for improving security and decreasing the chances of perforation. Methods : Thirty-two patients undergoing surgery with CPS instrumentation (C3–C7) at our institute between June 2017 and December 2018 were included in the study. All the patients had cervical trauma, and pedicle screw insertion was made according to the free-hand “slide technique”. Lamina, lateral mass and facet joint of the target area were clearly exposed and the optimal entry point was found on the lateral mass posterior surface. A pedicular probe was then inserted and gently advanced. During the pedicle probe insertion, the cortex of the medial margin of the pedicle acted as a “slide” to permit safe insertion of the screw. If the pedicle screw pathway was intact, screw of appropriate size was carefully placed. Three-dimensional (3D) CT imaging reconstruction was performed in all the patients after surgery, and screw perforations were graded with the Gertzbein-Robbins classification. Results : A total of 257 CPSs (C3-7) were inserted, of which 41 CPSs in C3, 61 CPSs in C4, 55 CPSs in C5, 53 CPSs in C6, and 47 CPSs in C7. The diameter and length of CPSs were 3.5 mm and 22-26 mm respectively. According to the Gertzbein-Robbins classification, grade 0, 231 screws; grade 1, 19 screws; and grade 2, 7 screws. No neurovascular complications occurred stemming from malpositioning of pedicle screws. In perforated screws (26 screws), lateral perforations were 16, medical perforations were 5, and inferior perforations were 4. Conclusions : The initial usage result show the “slide technique” is a safe, effective and cost-effective technique for pedicle screw placement in the cervical spine. This is the first report of such technique, we recommend it to wide practical application though further studies are needed.


2020 ◽  
Author(s):  
Bin Liu ◽  
Xiangyang Liu ◽  
Xiongjie Shen ◽  
Guoping Wang ◽  
Yixin Chen

Abstract Background: Cervical Pedicle Screw(CPS) placement is a challenging work due to the high risk of neurovascular complications. Although there have been several different free-hand or navigation assisted techniques for CPS placement, perforations may occur during screw insertion, especially lateral perforation. The objective of this manuscript is to describe a novel free-hand technique for subaxial CPS placement (C3–C7) and to evaluate if it decreases the chances of perforation.Methods: Thirty-two patients undergoing surgery with CPS instrumentation (C3–C7) at our institute between June 2017 and December 2018 were included in this study. All the patients had cervical trauma, and pedicle screw insertion was performed according to the free-hand “slide technique”. The lamina, lateral mass and facet joint of the target area were exposed and the optimal entry point was found on the lateral mass posterior surface. A pedicular probe was then inserted and gently advanced. During the pedicle probe insertion, the cortex of the medial margin of the pedicle acted as a slide to permit the safe insertion of the screw. If the pedicle screw pathway was intact, the screw of the appropriate size was carefully placed. Three-dimensional (3D) CT imaging reconstruction was performed in all the patients after surgery, and screw perforations were graded with the Gertzbein-Robbins classification.Results: A total of 257 CPSs (C3-7) were inserted, of which 41 CPSs were in C3, 61 CPSs were in C4, 55 CPSs were in C5, 53 CPSs were in C6, and 47 CPSs were in C7. The diameter and length of CPSs were 3.5 mm and 22-26 mm respectively. According to the Gertzbein-Robbins classification, grade 0, 231 screws; grade 1, 19 screws; and grade 2, 7 screws. No neurovascular complications occurred stemming from malpositioning of pedicle screws. Among perforated screws (26 screws), there were 16 lateral perforations, 5 medical perforations, and 4 inferior perforations.Conclusions: The initial usage result shows the “slide technique” is a safe, effective and cost-effective technique for pedicle screw placement in the cervical spine. This is the first report of such a technique. We recommend its use though further studies are needed.


2021 ◽  
Author(s):  
Vishal Kumar ◽  
Vishnu Baburaj ◽  
Prasoon Kumar ◽  
Sarvdeep Singh Dhatt

AbstractBackgroundPedicle screw insertion is routinely carried out in spine surgery that has traditionally been performed under fluoroscopy guidance. Robotic guidance has recently gained popularity in order to improve the accuracy of screw placement. However, it is unclear whether the use of robotics alters the accuracy of screw placement or clinical outcomes.ObjectivesThis systematic review aims to compare the results of pedicle screws inserted under fluoroscopy guidance, with those inserted under robotic guidance, in terms of both short-term radiographic outcomes, as well as long-term clinical outcomes.MethodsThis systematic review will be conducted according to the PRISMA guidelines. A literature search will be conducted on the electronic databases of PubMed, Embase, Scopus, and Ovid with a pre-determined search strategy. A manual bibliography search of included studies will also be done. Original articles in English that directly compare pedicle screw insertion under robotic guidance to those inserted under fluoroscopy guidance will be included. Data on outcomes will be extracted from included studies and analysis carried out with the help of appropriate software.


SICOT-J ◽  
2020 ◽  
Vol 6 ◽  
pp. 9
Author(s):  
Hatem Galal Said ◽  
Tarek Nabil Fetih ◽  
Hosam Elsayed Abd-Elzaher ◽  
Simon Martin Lambert

Introduction: Coracoid fractures have the potential to lead to inadequate shoulder function. Most coracoid base fractures occur with scapular fractures and the posterior approaches would be utilized for surgical treatment. We investigated the possibility of fixing the coracoid through the same approach without an additional anterior approach. Materials and methods: Multi-slice CT scans of 30 shoulders were examined and the following measurements were performed by an independent specialized radiologist: posterior coracoid screw entry point measured form infraglenoid tubercle, screw trajectory in coronal plane in relation to scapular spine and lateral scapular border, screw trajectory in sagittal plane in relation to glenoid face bisector line and screw length. We used the results from the CT study to guide postero-anterior coracoid screw insertion under fluoroscopic guidance on two fresh frozen cadaveric specimens to assess the reproducibility of accurate screw placement based on these parameters. We also developed a novel fluoroscopic projection, the anteroposterior (AP) coracoid view, to guide screw placement in the para-coronal plane. Results: The mean distance between entry point and the infraglenoid tubercle was 10.8 mm (range: 9.2–13.9, SD 1.36). The mean screw length was 52 mm (range: 46.7–58.5, SD 3.3). The mean sagittal inclination angle between was 44.7 degrees (range: 25–59, SD 5.8). The mean angle between screw line and lateral scapular border was 47.9 degrees (range: 34–58, SD 4.3). The mean angle between screw line and scapular spine was 86.2 degrees (range: 75–95, SD 4.9). It was easy to reproduce the screw trajectory in the para-coronal plane; however, multiple attempts were needed to reach the correct angle in the parasagittal plane, requiring several C-arm corrections. Conclusion: This study facilitates posterior fixation of coracoid process fractures and will inform the “virtual visualization” of coracoid process orientation.


2019 ◽  
Vol 19 (2) ◽  
pp. E149-E150 ◽  
Author(s):  
Nikolay L Martirosyan ◽  
Joshua T Wewel ◽  
Juan S Uribe

Abstract Many established techniques exist for minimally invasive pedicle screw placement. Nearly all techniques incorporate the use of a Kershner wire (K-wire) at various points in the work-flow. The use of a K-wire adds an additional step. If its position is lost, it requires repeating all previous steps, and placement is not without complication. The use of a guide-wireless sharp screws allows the surgeon to place a pedicle screw in 1 step with several fluid maneuvers.1 The patient underwent Institutional Review Board-approved consent for this study. Following traditional computed tomography-based navigation, a stab incision is made, followed by fascial dissection with monopolar cautery. The sharp screw is placed percutaneously at the facet-transverse process junction. The precise entry point is confirmed with navigation, followed by a sentinel anterior-posterior fluoroscopic image, verifying the accuracy of the navigation. The cortical bone is traversed by malleting the sharp tip through the cortex. When the cancellous bone is engaged, the screw is then advanced through the pedicle. This set of steps allows for safe, efficient placement of percutaneous pedicle screws without the need for a guidewire. Mal-placement regarding sharp pedicle screw insertion is similar to K-wire-dependent screw placement. Surgeons must be cognoscente of exceptionally sclerotic bone, which can prove difficult to cannulate. Conversely, osteoporotic bone that is liable to a cortical pedicle breach, transverse process fracture, and/or maltrajectory are all considerations when placing a K-wireless, sharp pedicle screw. Anterior-posterior fluoroscopy is utilized to confirm accuracy of image-guided navigation and mitigate malplacement of pedicle screws.


2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.


2016 ◽  
Vol 25 (5) ◽  
pp. 610-619 ◽  
Author(s):  
Roberto Gazzeri ◽  
Raffaelino Roperto ◽  
Claudio Fiore

OBJECTIVE Pedicle screw instrumentation of the osteoporotic spine carries an increased risk of screw loosening, pullout, and fixation failure. A variety of techniques have been used clinically to improve pedicle screw fixation in the presence of compromised bone. Pedicle screws may be augmented with cement, but this may lead to cement leakage and result in disastrous consequences. To avoid these complications, a multiaxial expandable pedicle screw has been developed. This was a prospective, single-center study designed to evaluate the clinical results of patients with osteoporosis with traumatic and degenerative spinal diseases treated with expandable pedicle screws. METHODS Thirty-three patients (mean age 61.4 years) with osteoporosis and traumatic or degenerative spinal diseases underwent spinal posterior fixation with expandable screws. Preoperative and postoperative visual analog scale (VAS) for pain and Oswestry Disability Index (ODI) questionnaire scores were obtained. The immediate postoperative screw position was measured and compared with the final position on lateral plain radiographs and axial CT scans at the 1- and 2-year follow-up examinations. RESULTS A total of 182 pedicle screws were used, including 174 expandable and 8 regular screws. The mean preoperative patient VAS score improved from 8.2 to 3.6 after surgery. The mean ODI score improved from 83.7% before surgery to 29.7% after the operation and to 36.1% at the final follow-up. No screw migration had occurred at the 1-year follow-up, but 1 screw breakage/migration was visualized on spinal radiography at the 2-year follow-up. CONCLUSIONS The results of this study show that the multiaxial expandable pedicle screw is a safe and practical technique for patients with osteoporosis and various spinal diseases and adds a valuable tool to the armamentarium of spinal instrumentation.


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


2022 ◽  
Vol 52 (1) ◽  
pp. E8

OBJECTIVE Pedicle screw insertion for stabilization after lumbar fusion surgery is commonly performed by spine surgeons. With the advent of navigation technology, the accuracy of pedicle screw insertion has increased. Robotic guidance has revolutionized the placement of pedicle screws with 2 distinct radiographic registration methods, the scan-and-plan method and CT-to-fluoroscopy method. In this study, the authors aimed to compare the accuracy and safety of these methods. METHODS A retrospective chart review was conducted at 2 centers to obtain operative data for consecutive patients who underwent robot-assisted lumbar pedicle screw placement. The newest robotic platform (Mazor X Robotic System) was used in all cases. One center used the scan-and-plan registration method, and the other used CT-to-fluoroscopy for registration. Screw accuracy was determined by applying the Gertzbein-Robbins scale. Fluoroscopic exposure times were collected from radiology reports. RESULTS Overall, 268 patients underwent pedicle screw insertion, 126 patients with scan-and-plan registration and 142 with CT-to-fluoroscopy registration. In the scan-and-plan cohort, 450 screws were inserted across 266 spinal levels (mean 1.7 ± 1.1 screws/level), with 446 (99.1%) screws classified as Gertzbein-Robbins grade A (within the pedicle) and 4 (0.9%) as grade B (< 2-mm deviation). In the CT-to-fluoroscopy cohort, 574 screws were inserted across 280 lumbar spinal levels (mean 2.05 ± 1.7 screws/ level), with 563 (98.1%) grade A screws and 11 (1.9%) grade B (p = 0.17). The scan-and-plan cohort had nonsignificantly less fluoroscopic exposure per screw than the CT-to-fluoroscopy cohort (12 ± 13 seconds vs 11.1 ± 7 seconds, p = 0.3). CONCLUSIONS Both scan-and-plan registration and CT-to-fluoroscopy registration methods were safe, accurate, and had similar fluoroscopy time exposure overall.


Sign in / Sign up

Export Citation Format

Share Document