Effect of Gestational Age, CRF and Cortisol on ACTH Secretion from Slices of Fetal Sheep Pituitaries in an in vitro Perifusion System

1993 ◽  
Vol 58 (5) ◽  
pp. 564-569 ◽  
Author(s):  
I. Caroline McMillen ◽  
Jennifer J. Merei
1989 ◽  
Vol 122 (1) ◽  
pp. 15-22 ◽  
Author(s):  
A. N. Brooks ◽  
L. A. Power ◽  
S. A. Jones ◽  
K. P. Yang ◽  
J. R. G. Challis

ABSTRACT Corticotrophin-releasing factor (CRF) is thought to be an important physiological regulator of the pituitary-adrenal axis in fetal sheep and, as such, plays a fundamental role in the initiation of parturition in this species. However, little is known of the controls of CRF secretion from the fetal hypothalamus. We looked for the presence of CRF in fetal hypothalami, and examined whether the hypothalamic CRF concentration or molecular species changed in relation to gestational age. We established an in-vitro perifusion system to examine the release of CRF from perifused hypothalami taken from fetuses at day 100 and day 140 of pregnancy, under basal conditions and in response to potassium depolarization and/or dexamethasone administration. Immunoreactive CRF was present in fetal hypothalami as early as day 100 (2·42 ± 0·99 (s.e.m.) μg/g protein, n = 9) and in similar concentrations at day 140 (2·31 ± 0·69 μg/g protein, n = 9). There was a significant (P < 0·05) increase in hypothalamic CRF content to 14·79 ± 4·09 μg/g protein (n = 16) between day 122 and day 135 of gestation. Using Sephadex G-75 chromatography, hypothalamic extracts at day 100, days 122–135 and day 140 eluted with a single peak of immunoreactivity which corresponded to synthetic ovine CRF(1–41). The basal release of CRF from perifused hypothalami at day 140 (76·6 ± 10·4 pg/fraction, n = 8) was significantly (P < 0·05) greater than at day 100 (50·1 ± 10·2 pg/fraction, n = 11). Dexamethasone significantly inhibited basal CRF release at day 140 of gestation but not at day 100. Potassium depolarization caused a rapid release of CRF in all cases, a response which was independent of gestational age or treatment with dexamethasone. We conclude that the fetal hypothalamus contains immunoreactive CRF as early as day 100 of gestation and that this material may be released when perifused in vitro under basal conditions and in response to a depolarizing agent. The basal release of CRF from perifused hypothalami of day-140 fetuses was greater than at day 100 and was inhibited by dexamethasone, suggesting maturation of negative feedback control of CRF output between days 100 and 140. Since dexamethasone had no effect on potassium-stimulated release of CRF, we suggest that its effects are at sites other than the hypothalamic CRF nerve terminals. Journal of Endocrinology (1989) 122, 15–22


1993 ◽  
Vol 137 (3) ◽  
pp. 391-401 ◽  
Author(s):  
M. J. Evans ◽  
A. G. Marshall ◽  
N. E. Kitson ◽  
K. Summers ◽  
R. A. Donald

ABSTRACT The multifactorial control of ACTH is well established. We wished to establish and characterize an in-vitro perifusion system, using equine anterior pituitary cells and physiological concentrations of secretagogues, to investigate factors which affect the dynamics of ACTH secretion. Anterior pituitary tissue was divided for dispersion into cells with collagenase, trypsin or dispase, or by mechanical dispersion. After dispersal followed by 18-h incubation, cells were perifused and the ACTH response to 10-min pulses of arginine vasopressin (AVP; 100 nmol/l), corticotrophin-releasing hormone (CRH; 0·01 nmol/l), and AVP (100 nmol/l) plus CRH (0·01 nmol/l) determined. ACTH responses to these secretagogues were lower (P <0·05) in cells prepared using the enzymes dispase and trypsin than with the enzyme collagenase. Cells prepared by mechanical methods were not responsive. Collagenase-prepared cells were used in subsequent experiments. In dose-response studies (10-min pulse length), a steep CRH–ACTH dose-response curve was obtained with the minimum effective concentration of CRH between 0·001 and 0·01 nmol/l, and a maximum effective concentration of 1·0 nmol/l. A less steep AVP–ACTH dose-response curve was obtained with a minimum effective concentration of AVP between 0·5 and 5 nmol/l, and no plateau in response up to 5000 nmol AVP/l. Increasing the incubation time between cell preparation and stimulation with AVP from 18 h to 90 h significantly (P <0·01) increased the ACTH response. Repeated stimulation by AVP (100 nmol/l) or CRH (0·01 nmol/l) (5-min pulses every 30 min for 23 pulses) produced ACTH responses which decreased in an approximately exponential curve with time. When AVP and CRH were given at physiological concentrations, pulse lengths and pulse frequency, the ACTH response to repeated 1-min pulses of AVP, measured as height above basal secretion, was potentiated by the addition of CRH (1, 2·5, 5, 10 and 20 pmol/l) as a constant perifusion at all AVP concentrations tested (1 nmol AVP/l, P < 0·02; 10 nmol AVP/l, P <0·0005; 25 nmol AVP/l, P <0·0005). During the 1-min AVP pulse, the AVP concentration at the level of the cells was 30% of the expected concentration. Potentiation was increased both by increasing AVP concentration (P <0·00005) and by increasing CRH concentration (P <0·00005) up to 5 pmol CRH/l. The ACTH height response to repeated AVP stimulation significantly (P = 0·0034) decreased with time, independent of CRH and AVP concentration. There was a significant (P = 0·014) decrease in ACTH response to CRH infusion with time, independent of CRH concentration. We conclude that the responsiveness of pituitary cells is markedly influenced by the preparative techniques. The collagenase-dispersed cells, in the in-vitro perifusion system developed, responded to secretagogues which were given at physiological concentrations, pulse lengths and periods. The system thus fulfills our requirements of in-vitro responses reflecting those observed in vivo, and can therefore be used to investigate the multifactorial control of ACTH secretion further. Journal of Endocrinology (1993) 137, 391–401


1995 ◽  
Vol 144 (3) ◽  
pp. 569-576 ◽  
Author(s):  
I C McMillen ◽  
J J Merei ◽  
A White ◽  
S Crosby ◽  
J Schwartz

Abstract We have used a perifusion system and slices of the anterior pituitary of the fetal sheep combined with specific immunoradiometric assays to investigate the effect of increasing gestational age and cortisol infusion on the output of ACTH(1–39) and the ACTH precursors, proACTH and pro-opiomelanocortin, from the fetal sheep pituitary. Two slices from each fetal anterior pituitary at 106–113 days (n=3), 120–136 days (n=5) and 140–143 days (n=5) of gestation were used. Slices from each anterior pituitary were perifused with the perifusion buffer for at least 120 min prior to the infusion of cortisol (100 nm) for 30 min or buffer alone (control). The anterior pituitary output (fmol/5 min per mg pituitary) of ACTH(1–39) and the ACTH precursors were measured using specific immunoradiometric assays. There was a significant increase in the anterior pituitary secretion rate of ACTH(1–39) between 120 and 136 days (1·04 ±0·23 fmol/5 min per mg) and between 140 and 143 days of gestation (3·08 ±0·33 fmol/5 min per mg). In contrast, there was no change in the secretory rate of the ACTH precursors between 105 and 143 days of gestation. The ratio of the anterior pituitary output of the ACTH precursors:ACTH(1–39) therefore decreased between 120 and 143 of days gestation from 19·10 ±2·05 to 6·36 ± 0·58. There was no effect of cortisol infusion on the anterior pituitary secretion of either ACTH(1–39) or the ACTH precursors before 116 days of gestation. After 120 days, the anterior pituitary output of ACTH(1–39) was significantly decreased by cortisol with the maximal change (43 ± 7%) occurring 10–15 min after the start of cortisol inclusion in the perifusate. Cortisol also altered the secretion of ACTH precursors. Although there was no significant effect with respect to baseline secretion rates, precursor secretion was elevated at the beginning of perifusion with cortisol, compared with precursor secretion after cortisol. The ratio of the anterior pituitary output of ACTH precursors:ACTH(1–39) increased from basal values of 16 ±4 and 12 ±4 (precortisol infusion) to 48 ± 14 at 15 min after the start and 40 ± 14 at 45 min after the end of the cortisol infusion. The differential effects of increasing gestational age and cortisol infusion on the output of ACTH(1–39) and the ACTH precursors may be explained by a change in the functional populations of corticotrophs in the fetal sheep anterior pituitary. These changes may be important in the stimulation of the fetal adrenal cortex which occurs before delivery. Journal of Endocrinology (1995) 144, 569–576


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


1985 ◽  
Vol 249 (1) ◽  
pp. E115-E120
Author(s):  
F. H. Morriss ◽  
R. N. Marshall ◽  
S. S. Crandell ◽  
B. J. Fitzgerald ◽  
L. Riddle

In vitro assays for [35S]sulfate uptake by ovine fetal costal cartilage were used to assess gestational changes in cartilage metabolism. Addition of 20% normal human serum to the incubation medium increased fetal cartilage [35S]sulfate incorporation into glycosaminoglycans. Both basal and human serum-stimulated uptakes of [35S]sulfate by fetal sheep cartilage decreased from midgestation to full term. The incremental response in [35S]sulfate uptake that was stimulated by human serum decreased as gestation proceeded to full-term. Fetal serum sulfate concentration decreased logarithmically during gestation, raising the possibility that cartilage sulfate uptake might become substrate limited as full term is approached. Perfusion of seven late gestation sheep fetuses for 7 days with Na2SO4 to achieve serum sulfate concentrations similar to those observed earlier in gestation resulted in a 33% increase in mean cartilage [35S]sulfate uptake compared with that of control twin fetuses, but uptake was not increased to values that occurred spontaneously earlier in gestation. These results suggest that the decreasing rate of [35S]sulfate uptake by fetal cartilage during the last half of gestation is associated only minimally with decreasing serum sulfate levels and is most consistent with intrinsic change in resting chondrocyte metabolism during gestation.


Sign in / Sign up

Export Citation Format

Share Document